

ANL/ALCF-16/3

Camellia v1.0 Manual

 Part I

Argonne Leadership Computing Facility

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne
National Laboratory, or UChicago Argonne, LLC.

ANL/ALCF-16/3

Camellia v1.0 Manual

Part I

prepared by
Nathan V. Roberts
Argonne Leadership Computing Facility, Argonne National Laboratory

September 28, 2016

Camellia v1.0 Manual
Part I

Nathan V. Roberts

September 28, 2016

Contents

1 Introduction 4
1.1 Core Features . 4
1.2 Structure of this Manual . 5

2 Some Preliminaries 7
2.1 Coding Conventions . 7

2.1.1 Reference-Counted Pointers in Camellia 7
2.1.2 CommandLineProcessor 8
2.1.3 Some Useful C++11 Features 9
2.1.4 The auto Keyword . 9

2.2 Terminology . 10
2.3 A Brief Introduction to DPG 11

2.3.1 An Example: Ultraweak Poisson 12
2.4 Core Classes in Camellia . 13

3 Stokes Cavity Flow Using DPG 17
3.1 The DPG Ultraweak Formulation 17
3.2 Stokes Bilinear Form Implementation 19
3.3 The Cavity Flow Problem . 21
3.4 Cavity Flow Implementation 23

3.4.1 Defining the Mesh . 23
3.4.2 Boundary Conditions and Right-Hand Side 24
3.4.3 The Test Space Inner Product 26
3.4.4 Solution and Visualization 26
3.4.5 Adaptive Mesh Refinements 27

3.5 Stokes Cavity Flow Driver . 30

1

4 Navier-Stokes Cavity Flow Using DPG 32
4.1 Ultraweak Formulation for Navier-Stokes 32
4.2 Adjusting the RHS for Navier-Stokes Linearization 35
4.3 Test Space Inner Product . 36
4.4 Boundary Conditions . 36
4.5 The Navier-Stokes Solve and the Newton Stopping Criterion . 37
4.6 A Dynamic Newton Threshold 38
4.7 Navier-Stokes Cavity Flow Driver 41

5 Formulations: Poisson, Stokes, and Navier-Stokes 44
5.1 The PoissonFormulation Class 45
5.2 The StokesVGPFormulation Class 47

5.2.1 StokesVGPFormulation: Other Notable Features . . . 49
5.3 The NavierStokesVGPFormulation Class 52
5.4 Drivers . 54

5.4.1 Poisson Driver . 54
5.4.2 Stokes Cavity Flow Driver 56
5.4.3 Navier-Stokes Cavity Flow Driver 58

6 Global Linear Solvers: Direct and Iterative Options 60
6.1 Solver Interface . 60
6.2 Static Condensation . 61
6.3 Geometric Multigrid Preconditioned Iterative Solves 62

6.3.1 Other GMGSolver Options 63

A Other Features 66
A.1 Support For Transient Problems 67
A.2 Custom Functions in Camellia 68
A.3 Other Finite Element Methods 68
A.4 Custom Refinement Strategies 69
A.5 Unit Tests . 70
A.6 Visualization . 71
A.7 Common Issues with MPI . 72
A.8 Distributed Algorithms using Camellia’s MPIWrapper 73
A.9 The BasisReconciliation Class 76
A.10 Importing Meshes Using MOAB 76
A.11 Exporting Matrices for External Analysis 77

2

Acknowledgments

This work was supported by the O�ce of Science, U.S. Department of Energy,
under Contract DE-AC02-06CH11357. This research used resources of the
Argonne Leadership Computing Facility, which is a DOE O�ce of Science
User Facility supported under Contract DE-AC02-06CH11357.

I gratefully acknowledge the support of Argonne and the Argonne
Leadership Computing Facility during the postdoctoral work that allowed
much of the development documented in this manual. I thank Brendan
Keith for critical feedback regarding the manuscript.

I thank Paul Fischer for advice regarding geometric multigrid precondi-
tioning, and Jesse Chan for collaborating on the geometric multigrid work. I
thank Jesse Chan, Truman Ellis, and Brendan Keith for their contributions
to Camellia development.

I thank Leszek Demkowicz for ongoing collaborations regarding discon-
tinuous Petrov-Galerkin methods, and for his support during my PhD. work
and since.

3

Chapter 1

Introduction

Camellia [14] began as an e↵ort to simplify implementation of e�cient solvers
for the discontinuous Petrov-Galerkin (DPG) finite element methodology
of Demkowicz and Gopalakrishnan [6, 7]. Since then, the feature set
has expanded, to allow implementation of traditional continuous Galerkin
methods, as well as discontinuous Galerkin (DG) methods, hybridizable DG
(HDG) methods [5], first-order-system least squares (FOSLS) [3], and the
primal DPG method [8].

This manual serves as an introduction to using Camellia. We begin, in
Section 1.1, by describing some of the core features of Camellia. In Section
1.2 we provide an outline of the manual as a whole.

1.1 Core Features

Camellia provides mechanisms for rapid specification for many of the
standard parts of finite element methods, including:

• bilinear formulations,

• boundary conditions, and

• material and load data,

as well as the inner product on the test space, a requirement for DPG solves.
Camellia supports both field and trace variables—that is, variables defined
on the mesh volume as well as those defined on the mesh skeleton. For both of
these, vector and scalar variables are supported. Basis functions conforming

4

to the exact sequence—that is, H1, H(div) , H(curl), and L2—are provided
on each of the supported topologies, which include lines in 1D, triangle
and quadrilaterals in 2D, and hexahedra and tetrahedra in 3D. Support
for regular h-refinements of all these—with the exception of tetrahedra in
3D—is provided.1 Essentially arbitrary polynomial orders are supported for
hypercube topologies (some limitations are imposed on simplices).

Because Camellia began as a research tool investigating DPG in the
context of problems with relatively simple geometries, support for curvilinear
elements is currently limited to 2D geometries specified parametrically (a
somewhat homegrown approach). While some examples can be found in the
source code, we do not discuss curvilinear geometry in this manual; we expect
to support curvilinear geometry in arbitrary dimensions in a fashion similar
to other finite element codes (likely through nodal weights on each element
to specify geometry isoparametrically). This should be a relatively simple
extension of the current straight-edged implementation, and we hope to have
support for this in the near future.

At present, Camellia supports only real-valued, double-precision variables—
though it is worth noting that complex problems can be implemented by
introducing a real-valued variable for each component of complex variables.
We would like to extend Camellia to support templated scalar types in a
future release—this will allow direct support of complex variables, as well as
single-precision and quad-precision variables.

Essentially all computationally-intensive features support distributed
computation using MPI. Load-balancing is implemented using Zoltan. For
DPG systems, a robust iterative solver using geometric multigrid is provided.
Support for static condensation2 for ultraweak DPG systems is also provided.

1.2 Structure of this Manual

In Chapter 2, we cover a few preliminary concepts and conventions that will
be useful in the code examples. The remainder of the manual is driven by
examples. The first part of the manual focuses on DPG solvers, starting

1Support for tetrahedral refinements is a relatively simple extension that we hope to
add in the near future.

2Static condensation eliminates local degrees of freedom, to reduce the size of the
global system at the cost of some local computation. In the present release of Camellia,
we support element-local elimination of discontinuous field variables.

5

in Chapter 3, wherein we demonstrate the implementation of an adaptive
Stokes solver for the steady 2D lid-driven cavity flow problem, using DPG (a
brief introduction to DPG is also provided there). The third chapter extends
that implementation to support Navier-Stokes (and discusses one approach to
DPG in the context of nonlinear problems). These two chapters include the
full implementation of the appropriate variational formulations; in Chapter
5 we discuss usage of some formulations whose implementations are already
provided in Camellia for Poisson, Stokes, and Navier-Stokes—these can be a
much quicker way to get started.

Chapter 6 discusses supported options for the global linear solve,
including KLU, MUMPS, SuperLUDist, and Camellia’s built-in support for
geometric multigrid.

There are many further topics that we plan to address in detail in future
updates to this manual; we publish this as “Part I.” In Appendix A, we cover
in a summary fashion several of these further topics, including pointers on
where to look in the Camellia distribution for example implementations.

6

Chapter 2

Some Preliminaries

In this chapter, we cover background material of several kinds. We begin by
discussing a few coding conventions used in Camellia and useful in Camellia
drivers; then we define some terminology, and give a brief introduction
to the DPG methodology and related concepts. We conclude the chapter
with an introduction to several core classes in Camellia, which will be used
throughout the rest of the manual.

2.1 Coding Conventions

In this section, we begin by discussing reference-counted pointers, then turn
to a class that assists with processing command-line arguments. We then give
a brief introduction to several C++11 features used throughout Camelllia.

2.1.1 Reference-Counted Pointers in Camellia

Camellia makes extensive use of reference-counted pointers (RCPs), a
mechanism for simplifying memory management. An RCP “knows” how
many references there are to it. Once the number of references falls to
zero, the RCP can safely deallocate the memory it points to. Camellia uses
the Teuchos RCP class to define its reference-counted pointers. To define a
Teuchos RCP pointing to a new object of type MyClass, one might write

Teuchos ::RCP <MyClass > myPtr = Teuchos ::rcp(new MyClass ());

Here, Teuchos::RCP<MyClass> identifies a type templated on the MyClass
class. The Teuchos::rcp() method creates a new object of this type,

7

pointing to the new object created by new MyClass(). At this point, the
reference count is 1, because myPtr refers to the object, and nothing else
does. Because, especially for longer class names, Teuchos::RCP<MyClass>
can be a lot to type, Camellia adopts the convention of defining type
names (using C++ typedefs) of the form MyClassPtr to refer to the type
Teuchos::RCP<MyClass>.

Often, Camellia classes provide static constructors that return an RCP;
for example, the Solution::solution() constructors return a SolutionPtr
object. In these cases, there is no need either for Teuchos::rcp() or for the
new operator.

There are some issues that can arise with RCPs—one particular concern
is circular references, which can result in memory leaks. Because these are
not likely to come up in standard usage of Camellia, we do not discuss them
here; however, we refer the interested reader to the Teuchos::RCP Beginner’s

Guide, available from Sandia [1].

2.1.2 CommandLineProcessor

Teuchos provides a class, CommandLineProcessor, which assists in processing
command-line arguments. For instance, the following code defines variables
polyOrder and useIterativeSolver, with default values of 5 and true:

using namespace Teuchos;
CommandLineProcessor cmdp(false ,true);
int polyOrder = 5;
bool iterative = true; // otherwise , use direct solver
cmdp.setOption("polyOrder", &polyOrder);
cmdp.setOption("iterative", "direct", &iterative);
auto parseResult = cmdp.parse(argc ,argv);
if (parseResult != CommandLineProcessor :: PARSE_SUCCESSFUL)
{

return -1;
}

If this code were placed in the main() method of a driver MyDriver, then
the driver could be invoked as follows:

./ MyDriver --direct --polyOrder =8

which would initialize polyOrder to 8, and iterative to false. Moreover,
invoking

8

./ MyDriver --help

will print to console all options available.

2.1.3 Some Useful C++11 Features

Here, we briefly describe a few features provided by C++11, of which we
make extensive use in Camellia, and which may prove useful in developing
Camellia drivers:

• the auto keyword

• initializer lists, and

• range-based for loops.

2.1.4 The auto Keyword

In the CommandLineProcessor example code above, we had a line:

auto parseResult = cmdp.parse(argc ,argv);

This declares parseResult to be of whatever type cmdp.parse() returns;
the C++ compiler will determine the type from context. This is particularly
convenient when the type returned is long and/or complicated, as sometimes
happens with templated code.

Initializer Lists

Many Camellia methods take C++ standard template library containers
such as vector or set as arguments. C++11 provides a new interface
for constructing such containers, called initializer lists, in which values are
provided explicitly on construction. For example, one can write the following:

vector <double > dims = {1.0, 3.5, 8.0};
vector <vector <double >> points = {{0,0,0},{0,1,0},{0,1,1}};

9

Range-Based For Loops

C++11 also provides a new interface for convenient iteration over the
members of a container, in which one may write code of the form for
(element : container) to iterate over the elements in the container.
Thus, if we have the points container defined as above, we might write:

for (auto point : points)
{

cout << "x coord is: " << point [0] << endl;
}

to print out the x coordinate of each point.

2.2 Terminology

Here, we define a few terms that we employ throughout this manual. DPG
solutions can involve not only variables defined throughout the domain
but also variables that are defined only on the mesh skeleton. We call
solution variables defined throughout the domain field variables; often, these
will be discontinuous across inter-element interfaces. We call variables
that are defined only on the mesh skeleton trace variables; this is because
mathematically these arise by taking the trace of some combination of field
variables. When the term traced involves an outward-facing normal on each
element, we call this a flux variable. Our convention is to place hats on
variables to show that they are trace variables—when there is a corresponding
field variable, we use the same symbol: bu is a trace corresponding to field u.

For simplicity, we classify DPG formulations into two types: ultraweak

and primal formulations. In ultraweak formulations, all derivatives are
moved from the trial space onto the test space through elementwise integra-
tion by parts, and each field variable is discontinuous (mathematically, only
L2 regularity is assumed in the field variables). All other DPG formulations
are known as primal formulations: these include at least one field variable of
higher regularity. Note that primal DPG formulations usually do include at
least one flux or trace variable.1

1It is worth noting that what we are here calling “primal” DPG formulations include
what are sometimes called mixed DPG formulations elsewhere. For an example of the range
of DPG formulations available for a given problem, see Carstensen et al. [4], especially
Section 6, in which several formulations for Maxwell are discussed.

10

2.3 A Brief Introduction to DPG

In this section, we give a very brief overview of the DPG methodology. DPG
stands for discontinuous Petrov-Galerkin. Here, Petrov -Galerkin means that
the test space is allowed to di↵er from the trial space. In particular, we
compute the test space on the fly in such a way that the inf-sup condition is
automatically satisfied—this gives us the property that DPG is automatically
stable and generates a system matrix that is symmetric (Hermitian) positive
definite.

The test space for an element K is constructed as follows. Suppose that
we are given a bilinear form b(·, ·) : Uh(K) ⇥ Vh(K) ! R defined on some
discrete trial space Uh(K) and discrete test space Vh(K). We require that
the discrete test space has dimension at least as large as the trial space (in
practice, we may use a test space that is considerably larger). Suppose that
we are also given an inner product (·, ·)V on the test space. Now, if we take
e 2 Uh(K), then b(e, ·) : V ! R is a functional on the test space. By the
Riesz Representation Theorem, there exists a unique ve 2 Vh(K) such that
(ve, ·)V = b(e, ·). By prescribing a ve for each e 2 Uh(K), we construct a
test space that has the same dimension as Uh(K). Moreover, by testing with
these, we generate a system matrix that is Hermitian positive definite:

b(ei, vej) = (vei , vej)V = (vej , vei)V = b(ej, vei).

We emphasize that the above construction is performed elementwise. The
test space is thus allowed to be discontinuous across element interfaces; this
is the reason the method is called discontinuous. In the case of ultraweak
formulations, we additionally allow all field variables to be discontinuous.
In contrast to DG methods, in DPG we always enforce some continuity
requirements—for ultraweak formulations, continuity is enforced on the trace
and flux variables.

The Energy Norm and the Test Space Inner Product

As is obvious from the above, the behavior of DPG depends closely on the
choice of inner product on the test space. More precisely, if we define the
energy norm k·kE on the trial space by

kukE = sup
v2V,v 6=0

b(u, v)

(v, v)1/2V

,

11

then for an exact solution u, the DPG solution uh minimizes the error
ku� uhkE. Thus, if we select a di↵erent inner product on V , we will change
the norm in which we minimize the error. A natural question arises: can we
define the V inner product in such a way that k·kE is equivalent to some norm
of interest on U , with modest equivalence constants? Generally, determining
such an inner product will require problem-specific analysis, but if the norm
of interest is the L2 norm of the field variables, and we are using an ultraweak
formulation, then using the so-called adjoint graph norm on the test space
is appropriate. A full treatment of the graph norm can be found in Roberts
et al. [15]; here, we simply describe the algorithm which may be used to
generate the graph norm.

We begin by rewriting the bilinear form: for each field variable ui, we
collect all the test variables that are integrated against it. We can then
write the ui portion of the bilinear form as (ui, Aiv), where (·, ·) is the usual
L2 inner product, v is a group variable, and Ai is some linear di↵erential
operator on V . The graph norm is then defined by:

kvk2
graph

=
X

i

kAivk2L2 + kvk2L2 .

The inner product on the test space can then be taken to be the one
that generates this norm. (The kvk2L2 term e↵ectively “controls” the terms
involving traces and fluxes; one may introduce a small weight on this term
to improve the constants that govern the desired equivalence between the L2

norm and the energy norm.)

2.3.1 An Example: Ultraweak Poisson

To take one example, consider the Poisson problem:

�u = f

on a domain ⌦ with some mesh ⌦h. To get the ultraweak DPG formulation,
we first introduce a new unknown � = ru and rewrite as a system of first-
order equations:

r · � = f,

� �ru = 0.

12

We now multiply by test functions v and ⌧ , and integrate by parts on each
element K:

(��,rv)K + h� · n, vi@K = (f, v)K ,

(�, ⌧)K + (u,r · ⌧)� hu, ⌧ · ni@K = 0,

where (·, ·)K is the L2 inner product on element K. We now introduce a new
trace unknown bu and a new flux unknown b�n and sum both equations to get
our bilinear form b and load l:

b(·, ·) = (��,rv)K + hb�n, vi@K (2.3.1)

+ (�, ⌧)K + (u,r · ⌧)K � hbu, ⌧ · ni@K = (f, v)K = l(·). (2.3.2)

Now, we may rewrite b as follows:

b(·, ·) =(�, ⌧ �rv)K + (u,r · ⌧)K + {boundary terms},

which leads us to the following graph norm on the test space:

k(v, ⌧)k2V = k⌧ �rvk2 + kr · ⌧k2 + kvk2 + k⌧k2 . (2.3.3)

(Strictly speaking, the k⌧k2 term is not required, as the required equivalence
for the corresponding trace term—hbu, ⌧ · ni@K—will be achieved by the
k⌧ �rvk2 term alone; we include the k⌧k2 term here to be consistent with
the algorithm described above.)

2.4 Core Classes in Camellia

There are four types of variables defined in Camellia: test, field, trace, and
flux variables. Fields, traces, and fluxes are always trial (solution) variables.
Variables are implemented by the Var class; the VarFactory class allows
generation and tracking of variables. To create a VarFactory object that
tracks the variables from the Poisson ultraweak formulation in (2.3.1), we
can do the following:

VarFactoryPtr vf = VarFactory :: varFactory ();
// field variables:
VarPtr u = vf ->fieldVar("u", L2);
VarPtr sigma = vf ->fieldVar("sigma", VECTOR_L2);
// trace variable:

13

VarPtr u_hat = vf ->traceVar("u_hat", HGRAD);
// flux variable:
VarPtr sigma_n = vf ->fluxVar("sigma_n", L2);
// test variables:
VarPtr v = vf ->testVar("v", HGRAD);
VarPtr tau = vf ->testVar("tau", HDIV);

Functions in Camellia are implemented by the Function class. Functions
can depend not only on spatial coordinates, but also on the mesh. There are
built-in operator overloads for basic arithmetic operations on FunctionPtr
instances, so that if one has FunctionPtrs f1, f2, f3, one can write

FunctionPtr f4 = 3 + (f1 + 5 * f2) / f3;

with the expected result in f4. Functions generally compute values on many
points at once, amortizing the overhead associated with method calls. Several
static constructors are provided in the Function class to make working with
functions simpler. Among these are the following:

• constant()—returns a scalar or vector function with constant value.

• h()—returns a mesh-dependent function corresponding to the diameter
of the current element.

• normal()—returns a mesh-dependent function corresponding to the
outward-facing normal of the current element

• sqrt(f)—returns a function with value corresponding to the square
root of f.

• solution(var,soln)—returns a mesh-dependent function with values
corresponding to the var component of solution soln.

• xn(n)—returns the function xn, where n is an integer.

• yn(n)—returns the function yn, where n is an integer.

• zn(n)—returns the function zn, where n is an integer.

• vectorize(f1,f2[,f3])—returns a vector-valued function with the
provided functions as components.

14

The Function class also provides virtual methods corresponding to di↵eren-
tial operations; thus, one can take the x-derivative of some Function object;
the result is also a Function. For some functions, derivatives would be
undefined; in these cases, di↵erential operations will return a null function.

A key concept in Camellia is that of the linear term, implemented by the
LinearTerm class. This is an expression that is linear in the trial or test
variables. A linear term can be integrated on a specified discretization of a
domain, producing a vector (one entry per degree of freedom). LinearTerm
instances can also be integrated against each other on an element or over a
mesh, producing a matrix (one row and column for each degree of freedom).
There are also mechanisms for substituting function values for variables,
producing a function from a linear term.

LinearTerm objects consist of a Function weight and a Var instance.
There are overloads provided so that given a FunctionPtr f and a VarPtr
v, one may write

LinearTermPtr lt = f * v;

Linear terms are used in several places in Camellia. Bilinear forms are
built up out of (trial, test) pairings of linear terms; inner products are built
out of terms on either the trial or the test space. These are implemented
by the BF and IP classes, respectively. To make this clearer, suppose that
we have defined the VarFactory vf and VarPtrs u, sigma, u hat, sigma n,
v, and tau for the ultraweak Poisson formulation as above. We may then
create a BF object with these variables as follows:

BFPtr bf = BF::bf(vf);

To define the bilinear form as in (2.3.1), we can do the following:

bf->addTerm(-sigma , v->grad ());
bf->addTerm(sigma_n , v);

FunctionPtr n = Function :: normal ();
bf->addTerm(sigma , tau);
bf->addTerm(u, tau ->div ());
bf->addTerm(-u_hat , tau * n);

Furthermore, to define a test space inner product corresponding to the
graph norm (2.3.3) listed above, we may write the following:

IPPtr ip = IP::ip();
ip->addTerm(tau - v->grad ());

15

ip->addTerm(tau ->div ());
ip->addTerm(v);
ip->addTerm(tau);

Note that in contrast to the bilinear form, here we assume symmetry of the
form—only one linear term is provided to IP::addTerm(); each addTerm()
invocation corresponds to one of the squared terms in (2.3.3).

16

Chapter 3

Stokes Cavity Flow Using DPG

This chapter demonstrates the implementation of a DPG variational formu-
lation for the Stokes equations, and how to use this to write an adaptive
solver for the lid-driven cavity flow problem. We begin in Section 3.1 by
showing the mathematical derivation of the so-called ultraweak variational
formulation for the velocity-gradient-pressure Stokes system. In Section 3.2,
we show how to implement this formulation in Camellia. We then define the
cavity flow problem in Section 3.3; we show how to implement an adaptive
solver for this problem in Section 3.4.

3.1 The DPG Ultraweak Formulation

We want to solve the Stokes equations in domain ⌦ ⇢ R2:

�µ�u+rp = f in ⌦,

r · u = 0 in ⌦,

u = uD on @⌦,

where µ is (constant) viscosity, f is a vector forcing function, and the
unknowns are pressure p and velocity u velocity, with some prescribed
velocity data uD on the domain boundary.

To derive an ultraweak formulation, we take the following steps:

1. Introduce variables and equations to produce a first-order system.

2. Multiply by test functions and integrate.

17

3. Integrate by parts elementwise to move all derivatives to the test space.

4. Introduce new trace unknowns on the mesh skeleton corresponding to
the trial space boundary terms arising from integration by parts.

We take each of these steps for the Stokes system in turn. First, we
introduce a new unknown � = µru, giving us the system

�r · � +rp = f in ⌦,

1

µ
� �ru = 0 in ⌦,

r · u = 0 in ⌦,

u = uD on @⌦.

Because the new unknown is a gradient of the velocity, this is known
as the velocity-gradient-pressure (VGP) system. Other choices for first-
order systems include velocity-vorticity-pressure (VVP) and velocity-stress-
pressure (VSP).1 We choose VGP principally because we have performed
careful analysis of the corresponding DPG formulation [15].

Now, assume that we have partitioned the domain ⌦ into a mesh ⌦h.
We now multiply by test functions—vector v, tensor ⌧ , and scalar q—and
integrate each equation by parts on each element.

(� � pI,rv)
⌦h

� h(� � pI)n,vi@⌦h
= (f ,v)

⌦h
,

(u,rq)
⌦h

� hu · n, qi@⌦h
= 0,

✓
1

µ
�, ⌧

◆

⌦h

+ (u,r · ⌧)
⌦h

� hu, ⌧ni@⌦h
= 0,

u = uD on @⌦.

The ultraweak variational formulation can be understood as one in
which all the variables defined on the volume (the field variables)—here,
u, p, and �—are allowed to be discontinuous across element interfaces.
Because of this—and for related concerns about the functional setting of
the formulation—we need to do something to treat the terms in our system
that are evaluated on @⌦h. We therefore introduce new trace unknowns: a

1DPG formulations for these Stokes systems are derived in Nathan V. Roberts’s
dissertation [13].

18

velocity trace bu, corresponding to u, and btn, corresponding to (� � pI)n,2

on @⌦h. We also rewrite the boundary conditions in terms of the trace
unknowns. We then have:

(� � pI,rv)
⌦h

� hbtn,vi@⌦h
= (f ,v)

⌦h
,

(u,rq)
⌦h

� hbu · n, qi@⌦h
= 0,

✓
1

µ
�, ⌧

◆

⌦h

+ (u,r · ⌧)
⌦h

� hbu, ⌧ni@⌦h
= 0,

bu = uD on @⌦.

Summing the equations, we have our Stokes bilinear formulation:

b
Stokes

(u, v)
def
= (� � pI,rv)

⌦h
� hbtn,vi@⌦h

+ (u,rq)
⌦h

� hbu · n, qi@⌦h
(3.1.1)

+

✓
1

µ
�, ⌧

◆

⌦h

+ (u,r · ⌧)
⌦h

� hbu, ⌧ni@⌦h
= (f ,v)

⌦h
.

3.2 Stokes Bilinear Form Implementation

We are now ready to write code that defines the formulation we derived
above. We proceed in several steps:

1. Create a VarFactory object; this keeps track of the variables in play.

2. Define field variables.

3. Define trace and flux variables.

4. Define test variables.

5. Create a BF (bilinear form) object.

6. Add terms to the BF corresponding to the formulation we derived above.

First, create the VarFactory object:

VarFactoryPtr vf = VarFactory :: varFactory ();

2btn is sometimes called a pseudo-traction; � is sometimes referred to as a pseudo-stress.

19

Next, define the field variables. We have vector u, scalar p, and tensor
�, each of which is in L2 on each element (that is, they are allowed to
be discontinuous across element interfaces). Camellia provides support for
vector L2 variables, but at present it does not yet support tensor-valued L2

variables. For simplicity here, we assume two space dimensions and define
scalar variable p and vector variables u,�

1

, and �
2

.

VarPtr u = vf ->fieldVar("u", VECTOR_L2);
VarPtr p = vf ->fieldVar("p", L2);
VarPtr sigma1 = vf ->fieldVar("sigma_1", VECTOR_L2);
VarPtr sigma2 = vf ->fieldVar("sigma_2", VECTOR_L2);

We have two kinds of trace variables in our formulation: the bu variables are
traces of H1, while the btn variables are normal traces of H(div) . Because the
direction of the outward normal on one element’s face will be the opposite of
that on its neighbor, we need to weight the btn variables with ±1 during
integration. To distinguish this case from the H1-variable case, we call
variables that involve normal traces fluxes. We define two H1 traces, bu

1

and bu
2

, and two fluxes, bt
1n and bt

2n:

VarPtr u1_hat = vf ->traceVar("u1_hat", HGRAD);
VarPtr u2_hat = vf ->traceVar("u2_hat", HGRAD);
VarPtr tn1_hat = vf ->fluxVar("tn1_hat", L2);
VarPtr tn2_hat = vf ->fluxVar("tn2_hat", L2);

For trace variables, the function space designations—here, HGRAD for bu and
L2 for btn—determine the kind of continuity that will be enforced on element
sides (edges in 2D and faces in 3D). HGRAD means that vertex continuity will
be enforced; L2 means that the solution may be discontinuous at vertices in
2D and at vertices and edges in 3D.

We are now ready to define our test variables. Looking at equation (3.1.1),
we need a scalar q of which we take the gradient; therefore, this should be
placed in an H1 space. We also need a vector v of which we take the gradient;
we implement this as H1 scalar variables v

1

, v
2

. We also need vectors ⌧
1

, ⌧
2

complementing �
1

,�
2

; we need to take divergences of the ⌧ i, so these should
be placed in an H(div) space. The following lines define the test variables:

VarPtr q = vf ->testVar("q", HGRAD);
VarPtr v1 = vf ->testVar("v_1", HGRAD);
VarPtr v2 = vf ->testVar("v_2", HGRAD);
VarPtr tau1 = vf ->testVar("tau_1", HDIV);
VarPtr tau2 = vf ->testVar("tau_2", HDIV);

20

Next, we create a new BF object; this will define our bilinear form in
terms of the variables in our VarFactory:

BFPtr stokesBF = BF::bf(vf);

We then add terms corresponding to the terms in equation (3.1.1). To start,
we add terms corresponding to (� � pI,rv)

⌦h
� hbtn,vi@⌦h

:

stokesBF ->addTerm(sigma1 , v1 ->grad ());
stokesBF ->addTerm(-p, v1 ->dx());
stokesBF ->addTerm(-tn1_hat , v1);

stokesBF ->addTerm(sigma2 , v2 ->grad ());
stokesBF ->addTerm(-p, v2 ->dy());
stokesBF ->addTerm(-tn2_hat , v2);

Next, we add terms corresponding to (u,rq)
⌦h

� hbu · n, qi@⌦h
:

stokesBF ->addTerm(u, q->grad ());
// get a normal function:
FunctionPtr n = Function :: normal ();
stokesBF ->addTerm(-u1_hat * n->x() - u2_hat * n->y(), q);

Finally, we add terms corresponding to
⇣

1

µ�, ⌧
⌘

⌦h

+(u,r · ⌧)
⌦h
�hbu, ⌧ni@⌦h

:

double mu = 1.0; // unit viscosity
stokesBF ->addTerm(u->x(), tau1 ->div ());
stokesBF ->addTerm ((1.0/ mu) * sigma1 , tau1);
stokesBF ->addTerm(-u1_hat , tau1 ->dot_normal ());

stokesBF ->addTerm(u->y(), tau2 ->div ());
stokesBF ->addTerm ((1.0/ mu) * sigma2 , tau2);
stokesBF ->addTerm(-u2_hat , tau2 ->dot_normal ());

This completes the definition of the bilinear form. We will see how to use
this bilinear form to solve the lid-driven cavity flow problem in Section 3.4
below.

3.3 The Cavity Flow Problem

A classic challenge problem for Stokes flow is the lid-driven cavity flow
problem. A viscous fluid is confined in a square cavity with a lid; the lid
moves with unit velocity. This induces a vorticular flow within the cavity;

21

there are sequences of vortices with alternating direction going into each
corner (these are known as Mo↵att eddies [12]). Now, the obvious boundary
conditions for this problem—unit velocity at the lid, with zero velocity at
the walls—will involve a discontinuity in the velocity at the top corners.
This is non-physical, and mathematically places the solution outside of H1.
Physically, there will be some interpolation between the unit velocity at the
lid and the zero velocity at the corners. In our approach to this problem,
we perform a simple linear interpolation over a distance ✏ = 1

64

, as shown
in the schematic in Figure 3.1. In ultraweak DPG formulations, boundary

 u1 = 0u1 = 0

1/64 1/64

u1 = 1

Figure 3.1: Lid-driven cavity flow schematic. The boundary conditions
interpolate between u

1

= 1 at the lid and u
1

= 0 along the side walls.
(Zero conditions are imposed on u

2

the lid and on all walls.)

conditions are generally imposed on the trace variables. Here, we impose
boundary conditions on bu.

The cavity flow problem has a zero forcing function f . As is generally
true for incompressible flow problems, the Stokes equations only define the
pressure up to a constant. Mathematically, the usual way to specify a unique
pressure is to place p 2 L2

avg

(⌦); that is, to require that pressure have zero
average on the domain. Computationally, we may simply impose that the
pressure is zero at some point in the domain; if desired, we can post-process
to recover the zero-average solution.

22

3.4 Cavity Flow Implementation

3.4.1 Defining the Mesh

We would like to solve the cavity flow problem on an adaptive high-order
mesh. We will start with a quartic 2 ⇥ 2 mesh, and perform h-refinements
according to the DPG energy error measured. The MeshFactory class defines
some convenient methods for rapidly specifying some simple meshes. One of
these allows the definition of an axis-aligned rectilinear mesh. Camellia makes
a distinction between the mesh topology, which defines the topology and the
geometry of the mesh, and the mesh, which additionally defines polynomial
discretizations for each variable on each element. These are implemented by
the MeshTopology and Mesh classes, respectively. Here, we define the mesh
topology for the cavity problem:

vector <double > dims = {1.0 ,1.0}; // domain dimensions
vector <int > meshDims = {2,2}; // 2x2 initial mesh
vector <double > x0 = {0.0 ,0.0}; // lower -left corner at origin

MeshTopologyPtr meshTopo;
meshTopo = MeshFactory :: rectilinearMeshTopology(dims ,

meshDims , x0);

Next, we use the meshTopo to create a Mesh object with quartic field variables
for the Stokes bilinear form. Because the field variables belong to L2, this
means that the H1 order should be 5. We also need to specify the polynomial
enrichment order to use for the DPG test space; a rule of thumb is to use
the spatial dimension.3

int H1Order = 5;
int delta_k = 2;
MeshPtr mesh = MeshFactory :: minRuleMesh(meshTopo ,stokesBF ,

H1Order , delta_k);

The minRuleMesh() method produces a mesh that, on refinement, will use
the standard finite element minimum rule to constrain the solution between
adjacent elements that disagree on the fineness of the solution; the minimum
rule essentially states that the element with the minimal discretization (in

3Note that the local costs can increase dramatically, especially in higher dimensions,
for larger polynomial enrichments. Sometimes, good results may be obtained with smaller
polynomial enrichments; we have generally had good luck with delta k = 1 for Stokes in
2D and 3D, e.g.

23

terms of degrees of freedom) should constrain any other elements that share
an interface with it.4

3.4.2 Boundary Conditions and Right-Hand Side

To specify our problem, we need to specify boundary conditions and the
right-hand side of the equation. We instantiate a BC object which will store
the boundary conditions:

BCPtr bc = BC::bc();

The boundary conditions are slightly involved because of the interpolation
from the zero velocity at the wall to the unit velocity at the lid. We begin by
defining a Function subclass that implements this interpolation along the
lid at y = 1:

class LidVelocity : public SimpleFunction <double >
{

double _eps; // interpolation width
public:

LidVelocity(double eps)
{

_eps = eps;
}
double value(double x, double y)
{

if (abs(x) < _eps)
{

return x / _eps; // top left
}
else if (abs(1.0-x) < _eps)
{

return (1.0-x) / _eps; // top right
}
else
{

return 1; // top middle
}

}
};

4In an earlier, 2D-only version of the code, Camellia employed the maximum rule.
Maximum rule support for 2D remains available in the present version of the code, but it
should be considered deprecated.

24

This class definition could be placed in a separate .h file, or above the
main() method in the driver file. Here, our LidVelocity subclass is a
subclass of SimpleFunction, itself a subclass of the main Function class.
SimpleFunction allows the definition of functions that only depend on
spatial coordinates (i.e., functions that do not depend on the mesh).

Now, in the main driver, we can instantiate our subclass as follows:

double eps = 1.0 / 64.0;
FunctionPtr lidVelocity = Teuchos ::rcp(new LidVelocity(eps));

Now, we wish to specify the boundary region along which the boundary
conditions should be applied—in this case, the region of the boundary
where y = 1. Camellia provides two mechanisms for this—the first, using
tags, is intended primarily for meshes imported from an external source,
typically with complicated geometry. The second, which we use here, is
the SpatialFilter class, which specifies a region of space that should be
matched. Spatial filters are always applied to the boundary of the mesh.
SpatialFilter implements an overload of the ! (not) operator, so that we
can define the lid and wall filters as follows:

SpatialFilterPtr lid = SpatialFilter :: matchingY (1.0);
SpatialFilterPtr wall = !lid; // not lid --> wall

We can then define Dirichlet conditions on the x-velocity trace:

FunctionPtr zero = Function :: constant (0); // for wall velocity
bc->addDirichlet(u1_hat , lid , lidVelocity);
bc->addDirichlet(u1_hat , wall , zero);

For the y-velocity trace conditions, we want to impose a zero condition along
both the lid and walls; we take advantage of another overload, of the | (or)
operator, which allows us to write lid | wall to specify that we want the
boundary condition to apply at both the lid and walls:

bc->addDirichlet(u2_hat , lid | wall , zero);

We also need to specify the condition on the pressure. We could implement
a zero-mean constraint as follows:

bc->addZeroMeanConstraint(p);

Alternately, we can impose a zero value on the pressure at the center of the
mesh (note that the following depends on the fact that we have a vertex at
the center of the mesh—recall that we defined a 2⇥ 2 mesh):

25

vector <double > center = {0.5 ,0.5};
double p_value = 0;
bc->addSpatialPointBC(p->ID(), p_value , center);

We are now ready to define the right-hand side. Since this is zero, the
following will su�ce:

RHSPtr rhs = RHS::rhs ();

If we had FunctionPtr objects f1 and f2 that implemented f from equation
(3.1.1), we would write the following:

rhs ->addTerm(f1 * v1);
rhs ->addTerm(f2 * v2);

3.4.3 The Test Space Inner Product

To define our DPG method, we need to specify an inner product on the test
space. Frequently, a good choice for ultraweak DPG is the graph norm on
the test space, which e↵ectively minimizes the solution residual in the L2

norm. The IP class implements the inner product, and the BF class provides
a graphNorm() method that returns the graph norm on the test space. Thus
we define our inner product:

IPPtr ip = stokesBF ->graphNorm ();

3.4.4 Solution and Visualization

Now, we may define the Solution object:

SolutionPtr soln = Solution :: solution(stokesBF ,mesh ,bc,rhs ,ip);

We can now solve the problem by calling:

soln ->solve ();

We can export the solution in an HDF5 format suitable for viewing in
ParaView by using an HDF5Exporter as follows:

int refNumber = 0;
HDF5Exporter exporter(mesh ,"stokes -cavity -flow");
int numSubdivisions = 30; // coarse mesh -> more subdivisions
exporter.exportSolution(soln , refNumber , numSubdivisions);

26

The code above will place a stokes-cavity-flow directory in the working di-
rectory. This directory contains two files, stokes-cavity-flow-field.xmf
and stokes-cavity-flow-trace.xmf, corresponding to the field and trace
variables of the solution. The numSubdivisions argument controls how
many points are plotted along an edge—for quadrilateral elements, approxi-
mately the square of this number of points will be plotted. Thus 30 is a large
number to use, but for this coarse a quartic mesh, 30 is about the minimum
to avoid visual artifacts. The refNumber argument is provided as the time
value to the HDF5Exporter; this will allow us to store multiple refinements
in a single visualization.

Opening the field xmf file with ParaView, we can plot the x and y
component of the velocity field u, as well as the pressure p; these are shown
in Figure 3.2. Two things are worth noting regarding the solution: first,
there are visible discontinuities between elements; second, and perhaps not
obvious from the plots, the boundary conditions are not fully resolved by
the mesh. Because ✏ = 1

64

, we will need to perform five refinements into the
upper corners before the mesh is able to capture the boundary conditions
exactly.

(a) u1 (b) u2 (c) p

Figure 3.2: Lid-driven cavity flow: u
1

, u
2

, p solutions on initial 2⇥ 2, quartic
mesh.

3.4.5 Adaptive Mesh Refinements

DPG provides us with a way to measure the energy norm of the residual
on each element; the energy norm is the one in which DPG minimizes
the residual. This is therefore a very natural quantity to use as an
error indicator in driving adaptive refinements. The RefinementStrategy

27

class uses the energy norm as its default error indicator. We initialize a
RefinementStrategy object as follows:

double threshold = 0.2; // relative energy error threshold
RefinementStrategyPtr refStrategy =
RefinementStrategy :: energyErrorRefinementStrategy(soln ,

threshold);

During a refinement, this refStrategy will compute the energy error on each
element, determine the maximum error e

max

, and then refine any element that
has error greater than 0.2 ⇤ e

max

. The following loop will refine, solve, and
store the visualization data for each refinement:

int numRefinements = 8;
bool printToConsole = true;
for (refNumber = 1; refNumber < numRefinements; refNumber ++)
{

refStrategy ->refine(printToConsole);
soln ->solve ();
exporter.exportSolution(soln , refNumber , numSubdivisions);

}
// report final energy error:
double energyError = soln ->energyErrorTotal ();
cout << "Final energy error: " << energyError << endl;

This produces the mesh shown in Figure 3.3;5 the solution after 8 refinements
can be seen in Figure 3.4.

Figure 3.3: Lid-driven cavity flow: quartic mesh after 8 adaptive refinements.

5To produce a mesh plot like this one, one can open the trace xmf file in ParaView,
and plot a black Solid Color.

28

(a) u1 (b) u2 (c) p

Figure 3.4: Lid-driven cavity flow: u
1

, u
2

, p solutions on quartic mesh after 8
adaptive refinements.

29

3.5 Stokes Cavity Flow Driver

The complete driver for the Stokes adaptive cavity flow driver is included in
the Camellia distribution, under manual-examples. It is also listed below.
//
// 2016 UChicago Argonne. For licensing details , see LICENSE -Camellia in the licenses directory.
//

#include "Camellia.h"

using namespace Camellia;
using namespace std;

class LidVelocity : public SimpleFunction <double >
{

double _eps; // interpolation width
public:

LidVelocity(double eps)
{

_eps = eps;
}
double value(double x, double y)
{

if (abs(x) < _eps)
{

return x / _eps; // top left
}
else if (abs(1.0-x) < _eps)
{

return (1.0-x) / _eps; // top right
}
else
{

return 1; // top middle
}

}
};

int main(int argc , char *argv [])
{

Teuchos :: GlobalMPISession mpiSession (&argc , &argv); // initialize MPI

VarFactoryPtr vf = VarFactory :: varFactory ();

// field variables:
VarPtr u = vf ->fieldVar("u", VECTOR_L2);
VarPtr p = vf ->fieldVar("p", L2);
VarPtr sigma1 = vf ->fieldVar("sigma_1", VECTOR_L2);
VarPtr sigma2 = vf ->fieldVar("sigma_2", VECTOR_L2);

// trace and flux variables:
VarPtr u1_hat = vf ->traceVar("u1_hat", HGRAD);
VarPtr u2_hat = vf ->traceVar("u2_hat", HGRAD);
VarPtr tn1_hat = vf ->fluxVar("tn1_hat", L2);
VarPtr tn2_hat = vf ->fluxVar("tn2_hat", L2);

// test variables:
VarPtr q = vf ->testVar("q", HGRAD);
VarPtr v1 = vf ->testVar("v_1", HGRAD);
VarPtr v2 = vf ->testVar("v_2", HGRAD);
VarPtr tau1 = vf ->testVar("tau_1", HDIV);
VarPtr tau2 = vf ->testVar("tau_2", HDIV);

// create BF object:
BFPtr stokesBF = BF::bf(vf);

// get a normal function (will be useful in a moment):
FunctionPtr n = Function :: normal ();
double mu = 1.0; // unit viscosity

// add terms for v1:
stokesBF ->addTerm(sigma1 , v1->grad ());
stokesBF ->addTerm(-p, v1 ->dx());

30

stokesBF ->addTerm(-tn1_hat , v1);

// add terms for v2:
stokesBF ->addTerm(sigma2 , v2->grad ());
stokesBF ->addTerm(-p, v2 ->dy());
stokesBF ->addTerm(-tn2_hat , v2);

// add terms for q:
stokesBF ->addTerm(u, q->grad ());
stokesBF ->addTerm(-u1_hat * n->x() - u2_hat * n->y(), q);

// add terms for tau1:
stokesBF ->addTerm(u->x(), tau1 ->div ());
stokesBF ->addTerm ((1.0/ mu) * sigma1 , tau1);
stokesBF ->addTerm(-u1_hat , tau1 ->dot_normal ());

// add terms for tau2:
stokesBF ->addTerm(u->y(), tau2 ->div ());
stokesBF ->addTerm ((1.0/ mu) * sigma2 , tau2);
stokesBF ->addTerm(-u2_hat , tau2 ->dot_normal ());

vector <double > dims = {1.0 ,1.0}; // domain dimensions
vector <int > meshDims = {2 ,2}; // 2x2 initial mesh
vector <double > x0 = {0.0 ,0.0}; // lower -left corner at origin

MeshTopologyPtr meshTopo;
meshTopo = MeshFactory :: rectilinearMeshTopology(dims , meshDims , x0);
int H1Order = 5;
int delta_k = 2;
MeshPtr mesh = MeshFactory :: minRuleMesh(meshTopo , stokesBF , H1Order , delta_k);
BCPtr bc = BC::bc();

double eps = 1.0 / 64.0;
FunctionPtr lidVelocity = Teuchos ::rcp(new LidVelocity(eps));

SpatialFilterPtr lid = SpatialFilter :: matchingY (1.0);
SpatialFilterPtr wall = !lid; // not lid --> wall

FunctionPtr zero = Function :: constant (0); // for wall velocity
bc ->addDirichlet(u1_hat , lid , lidVelocity);
bc ->addDirichlet(u1_hat , wall , zero);

bc ->addDirichlet(u2_hat , lid | wall , zero);

vector <double > center = {0.5 ,0.5};
double p_value = 0;
bc ->addSpatialPointBC(p->ID(), p_value , center);

RHSPtr rhs = RHS::rhs ();

IPPtr ip = stokesBF ->graphNorm ();
SolutionPtr soln = Solution :: solution(stokesBF ,mesh ,bc,rhs ,ip);

soln ->solve ();

int refNumber = 0;
HDF5Exporter exporter(mesh ,"stokes -cavity -flow");
int numSubdivisions = 30; // coarse mesh -> more subdivisions
exporter.exportSolution(soln , refNumber , numSubdivisions);

double threshold = 0.2; // relative energy error threshold
RefinementStrategyPtr refStrategy = RefinementStrategy :: energyErrorRefinementStrategy(soln ,

threshold);
int numRefinements = 8;
bool printToConsole = true;
for (refNumber = 1; refNumber < numRefinements; refNumber ++)
{

refStrategy ->refine(printToConsole);
soln ->solve ();
exporter.exportSolution(soln , refNumber , numSubdivisions);

}
// report final energy error:
double energyError = soln ->energyErrorTotal ();
cout << "Final energy error: " << energyError << endl;

return 0;
}

31

Chapter 4

Navier-Stokes Cavity Flow
Using DPG

In this chapter, we solve the cavity flow problem introduced in Chapter 3,
now using the incompressible Navier-Stokes equations.1 These are nonlinear
equations. When dealing with nonlinear problems, the usual DPG approach
is to apply the DPG methodology to the linearized equations, and perform
Newton steps on these until a converged solution is found, and this is what
we support in Camellia. The equations are essentially the same as the Stokes
equations, except there is a nonlinear convective term u ·ru:

� 1

Re
�u+rp = f � u ·ru in ⌦,

r · u = 0 in ⌦.

We identify µ from the Stokes equations with 1

Re

, where Re is the Reynolds

number, a non-dimensional parameter that characterizes incompressible flow.

4.1 Ultraweak Formulation for Navier-Stokes

Introducing � = 1

Re

ru, we have the following system:

1For a fuller exploration of the DPG formulation for Navier-Stokes that we derive here,
see Roberts et al. [17].

32

�r · � +rp+ Reu · � = f in ⌦,

Re� �ru = 0 in ⌦,

r · u = 0 in ⌦,

u = uD on @⌦.

Testing as before and integrating by parts, we get the following nonlinear
formulation:

b
Navier�Stokes

(u, v)
def
= (� � pI,rv)

⌦h
+ (Reu · �,v)

⌦h
� hbtn,vi@⌦h

+ (u,rq)
⌦h

� hbu · n, qi@⌦h
(4.1.1)

+ (Re�, ⌧)
⌦h

+ (u,r · ⌧)
⌦h

� hbu, ⌧ni@⌦h
= (f ,v)

⌦h
,

which may be written in terms of the Stokes formulation:

b
Navier�Stokes

(u, v) = b
Stokes

(u, v) + (Reu · �,v)
⌦h

= l(v).

Linearizing about a background flow u = (u, p,�, bu,btn) with solution
increment �u = (�u,�p,��,�bu,�btn), we have:

b
Stokes

(u+�u, v) + (Re (u+�u) · (� +��),v)
⌦h

= l(v).

Dropping the the high-order term (�u ·��,v)
⌦h

and moving the known
terms to the right-hand side, we obtain:

b
Stokes

(�u, v)+ (Re (u ·�� +�u · �),v)
⌦h

(4.1.2)

= l(v)� b
Stokes

(u, v)� (Reu · �,v)
⌦h

.

Note that the Navier-Stokes variables in this formulation are identical to
those in the Stokes formulation; thus we may use exactly the same code to
define these as in Chapter 3. As suggested by (4.1.2), we will first set up a
Stokes bilinear form, and then define our linearized Navier-Stokes formulation
in terms of this. The below code, defining stokesBF, is nearly identical to
that in the last chapter; the only di↵erence is the use of Re in place of mu:

double Re = 1e2;

// add terms for v1:
stokesBF ->addTerm(sigma1 , v1 ->grad ());

33

stokesBF ->addTerm(-p, v1 ->dx());
stokesBF ->addTerm(-tn1_hat , v1);

// add terms for v2:
stokesBF ->addTerm(sigma2 , v2 ->grad ());
stokesBF ->addTerm(-p, v2 ->dy());
stokesBF ->addTerm(-tn2_hat , v2);

// add terms for q:
stokesBF ->addTerm(u, q->grad ());
stokesBF ->addTerm(-u1_hat * n->x() - u2_hat * n->y(), q);

// add terms for tau1:
stokesBF ->addTerm(sigma1 ,tau1);
stokesBF ->addTerm(u->x(), tau1 ->div ());
stokesBF ->addTerm(Re * sigma1 , tau1);
stokesBF ->addTerm(-u1_hat , tau1 ->dot_normal ());

// add terms for tau2:
stokesBF ->addTerm(sigma2 ,tau2);
stokesBF ->addTerm(u->y(), tau2 ->div ());
stokesBF ->addTerm(Re * sigma2 , tau2);
stokesBF ->addTerm(-u2_hat , tau2 ->dot_normal ());

We define the mesh in exactly the same way as in Chapter 3:

MeshTopologyPtr meshTopo;
meshTopo = MeshFactory :: rectilinearMeshTopology(dims ,

meshDims , x0);
int H1Order = 5;
int delta_k = 2;
MeshPtr mesh = MeshFactory :: minRuleMesh(meshTopo , stokesBF ,

H1Order , delta_k);

Note that we use the stokesBF to initialize the mesh, even though we are
actually interested in solving the Navier-Stokes equations. This is okay
because the two formulations will share a VarFactory—i.e., they have exactly
the same variables, enumerated in exactly same way. Similarly, we can now
define a background flow solution using stokesBF:

SolutionPtr backFlow = Solution :: solution(stokesBF ,mesh);

Here, we omit the bc, rhs, and ip arguments (which are then assigned
null values), because this Solution will only be used for storing solution
coe�cients, not for actually solving. When we refine, we would like to project

34

the refined cell’s background flow onto its children; to ensure that this will
happen automatically, we can register the solution with the mesh as follows:

mesh ->registerSolution(backFlow);

We are now ready to define our background flow functions; we will only need
u and �:

FunctionPtr u_prev = Function :: solution(u,backFlow);
FunctionPtr sigma1_prev = Function :: solution(sigma1 ,backFlow);
FunctionPtr sigma2_prev = Function :: solution(sigma2 ,backFlow);

Now, we create our Navier-Stokes bilinear form, and add terms corresponding
to � (Re (u ·�� +�u · �),v)

⌦h
:

BFPtr nsBF = stokesBF ->copy ();

nsBF ->addTerm(Re * u_prev * sigma1 , v1);
nsBF ->addTerm(Re * u_prev * sigma2 , v2);

nsBF ->addTerm(Re * sigma1_prev * u, v1);
nsBF ->addTerm(Re * sigma2_prev * u, v2);

The call to stokesBF->copy() creates a copy of the object that stokesBF
points to, allowing us to make modifications that do not a↵ect the original
stokesBF. (We will now use the original stokesBF to modify the right-hand
side.)

4.2 Adjusting the RHS for Navier-Stokes
Linearization

If we assume that we have the right-hand side object rhs set up to correspond
to our forcing function f (in the case of cavity flow f = 0), then we can adjust
it as follows:

LinearTermPtr stokesTerm = stokesBF ->testFunctional(backFlow);
rhs ->addTerm(-stokesTerm);

The BF::testFunctional(soln) method evaluates2 a bilinear form at a
given point in the trial space—a solution soln—producing a functional on

2Note that this does not mean that testFunctional() computes much of anything at
the time that it is called; instead, a LinearTermPtr is created which has references to the
soln object; this will be used when the linear term is evaluated in an integral computation.

35

the test space. In other words, this method “fills in” the solution soln for
the trial space variables in the bilinear form. Finally, we adjust rhs with a
term corresponding to (�Reu · �,v)

⌦h
:

rhs ->addTerm(-Re * u_prev * sigma1_prev * v1);
rhs ->addTerm(-Re * u_prev * sigma2_prev * v2);

4.3 Test Space Inner Product

We now create our inner product, the graph norm corresponding to our
Navier-Stokes formulation:

IPPtr ip = nsBF ->graphNorm ();

Note that because nsBF depends on the previous solution (backFlow), ip
does as well. (As the background flow is updated, the norm on the test space
will change in such a way as to preserve the equivalence of the DPG energy
norm with the L2 norm.)

4.4 Boundary Conditions

There is a subtlety involving the boundary conditions: in each Newton step,
we will be solving for the solution increment, so we need to write boundary
conditions accordingly. For the boundary conditions where zero is imposed
no modification is necessary, but anywhere else, to impose a function bcFxn
on trace var for a boundary region matched by a SpatialFilter sf we need
code of the form:

FunctionPtr var_prev = Function :: solution(var , backFlow);
bc->addDirichlet(var , sf, bcFxn - var_prev);

In the particular case of the cavity flow boundary conditions, we replace the
code defining bu

1

at the lid with the following:

FunctionPtr u1_hat_prev = Function :: solution(u1_hat ,backFlow);
bc->addDirichlet(u1_hat , lid , lidVelocity - u1_hat_prev);

Otherwise, we define bc just as in Chapter 3.

36

4.5 The Navier-Stokes Solve and the Newton
Stopping Criterion

We are now ready to create the Navier-Stokes solution object:

SolutionPtr soln = Solution :: solution(nsBF ,mesh ,bc,rhs ,ip);

Now, when we call soln->solve(), this will solve for the solution increment
�u, with background flow u as stored in backFlow. For cavity flow, we will
be happy with a zero initial guess; if we wanted something else, we could call
backFlow->projectOntoMesh(); this takes as argument a C++ map with
variable IDs as keys, and FunctionPtrs as values. After we solve for the
increment, we want to add it to the background flow; we want to repeatedly
do this until some stopping criterion is reached.

One simple stopping criterion is to stop when the combined L2 norm of the
field variables u, p,� in the solution increment soln gets below a threshold.
We will consider an appropriate threshold in a moment; for now, we set up
a Function that will allow us to measure this value:

FunctionPtr u_incr = Function :: solution(u,soln);
FunctionPtr p_incr = Function :: solution(p,soln);
FunctionPtr sigma1_incr = Function :: solution(sigma1 ,soln);
FunctionPtr sigma2_incr = Function :: solution(sigma2 ,soln);
FunctionPtr l2_squared = u_incr * u_incr + p_incr * p_incr

+ sigma1_incr * sigma1_incr + sigma2_incr * sigma2_incr;

Now, we set up a loop for the Newton iteration, with a starting threshold of
10�3:

double newtonThreshold = 1e-3;
double l2_incr = 0;
do
{

soln ->solve ();
// add increment with unit weight:
backFlow ->addSolution(soln , 1.0);
l2_incr = sqrt(l2_squared ->integrate(mesh));

} while (l2_incr > newtonThreshold);

37

4.6 A Dynamic Newton Threshold

We can enclose the above loop in another loop that performs adaptive mesh
refinements. However, what we will find is that a fixed threshold for the
stopping criterion is not ideal: if the threshold is too small, we may never
converge on a coarse mesh; if it is too large, we may not take enough Newton
steps to resolve the solution on fine meshes. For this reason, we often employ
a dynamic threshold. One approach is to take threshold ✏

0

= 10�3 for the
initial mesh. Then, on the nth refinement we measure the DPG energy error
of the solution increment, en, defined as

en = k�un ��un
hkE = kl(·)� b(�un

h, ·)kV 0
h
.

The rightmost expression is the energy norm of the solution residual, precisely
what RefStrategy computes in the course of adaptive refinements. We would
like the threshold to scale with the magnitude of the background flow; we
therefore define the relative error as

en
rel

=
en

k(un, pn,�n)kL2

.

We now define the stopping criterion threshold for the nth refinement as ✏n =
en�1

rel

✏
0

. As we refine, the DPG energy error en diminishes, and the tolerance
for the Newton steps will grow tighter. The following code implements the
refinement loop, complete with a dynamically updated threshold:

FunctionPtr p_prev = Function :: solution(p, backFlow);
FunctionPtr l2_backFlow_squared = u_prev * u_prev
+ p_prev * p_prev
+ sigma1_prev * sigma1_prev + sigma2_prev * sigma2_prev;

double newtonThreshold = 1e-3;
double energyThreshold = 0.2;
RefinementStrategyPtr refStrategy =
RefinementStrategy :: energyErrorRefinementStrategy(soln ,

energyThreshold);
int numRefinements = 8;
bool printToConsole = true;
double energyError , l2_soln;
for (refNumber = 0; refNumber <= numRefinements; refNumber ++)
{

do
{

38

soln ->solve ();
l2_incr = sqrt(l2_squared ->integrate(mesh));
// add increment with unit weight:
backFlow ->addSolution(soln , 1.0);

}
while (l2_incr > newtonThreshold);

refStrategy ->refine(printToConsole);
l2_soln = sqrt(l2_backFlow_squared ->integrate(mesh));
// update threshold:
energyError = refStrategy ->getEnergyError(refNumber);
newtonThreshold = 1e-3 * energyError / l2_soln;

}

The mesh and solution after 8 refinements are shown in Figures 4.1 and 4.2,
respectively. Note that, in contrast to the Stokes solutions from Chapter 3,
there is a slight asymmetry in both the solution and the adaptive refinements.

Figure 4.1: Lid-driven cavity flow for Re = 100: quartic mesh after 8 adaptive
refinements.

39

(a) u1 (b) u2 (c) p

Figure 4.2: Lid-driven cavity flow for Re = 100: u
1

, u
2

, p solutions on quartic
mesh after 8 adaptive refinements.

40

4.7 Navier-Stokes Cavity Flow Driver

The complete driver for the Navier-Stokes adaptive cavity flow driver is
included with the Camellia distribution, under manual-examples. It is also
listed below.
//
// 2016 UChicago Argonne. For licensing details , see LICENSE -Camellia in the licenses directory.
//

#include "Camellia.h"

using namespace Camellia;
using namespace std;

class LidVelocity : public SimpleFunction <double >
{

double _eps; // interpolation width
public:

LidVelocity(double eps)
{

_eps = eps;
}
double value(double x, double y)
{

if (abs(x) < _eps)
{

return x / _eps; // top left
}
else if (abs(1.0-x) < _eps)
{

return (1.0-x) / _eps; // top right
}
else
{

return 1; // top middle
}

}
};

int main(int argc , char *argv [])
{

Teuchos :: GlobalMPISession mpiSession (&argc , &argv); // initialize MPI
int rank = MPIWrapper :: CommWorld()->MyPID ();

VarFactoryPtr vf = VarFactory :: varFactory ();

// field variables:
VarPtr u = vf ->fieldVar("u", VECTOR_L2);
VarPtr p = vf ->fieldVar("p", L2);
VarPtr sigma1 = vf ->fieldVar("sigma_1", VECTOR_L2);
VarPtr sigma2 = vf ->fieldVar("sigma_2", VECTOR_L2);

// trace and flux variables:
VarPtr u1_hat = vf ->traceVar("u1_hat", HGRAD);
VarPtr u2_hat = vf ->traceVar("u2_hat", HGRAD);
VarPtr tn1_hat = vf ->fluxVar("tn1_hat", L2);
VarPtr tn2_hat = vf ->fluxVar("tn2_hat", L2);

// test variables:
VarPtr q = vf ->testVar("q", HGRAD);
VarPtr v1 = vf ->testVar("v_1", HGRAD);
VarPtr v2 = vf ->testVar("v_2", HGRAD);
VarPtr tau1 = vf ->testVar("tau_1", HDIV);
VarPtr tau2 = vf ->testVar("tau_2", HDIV);

// create Stokes BF object:
BFPtr stokesBF = BF::bf(vf);

// get a normal function (will be useful in a moment):
FunctionPtr n = Function :: normal ();
double Re = 1e2;

41

// add terms for v1:
stokesBF ->addTerm(sigma1 , v1->grad ());
stokesBF ->addTerm(-p, v1 ->dx());
stokesBF ->addTerm(-tn1_hat , v1);

// add terms for v2:
stokesBF ->addTerm(sigma2 , v2->grad ());
stokesBF ->addTerm(-p, v2 ->dy());
stokesBF ->addTerm(-tn2_hat , v2);

// add terms for q:
stokesBF ->addTerm(-u, q->grad ());
stokesBF ->addTerm(u1_hat * n->x() + u2_hat * n->y(), q);

// add terms for tau1:
stokesBF ->addTerm(u->x(), tau1 ->div ());
stokesBF ->addTerm(Re * sigma1 , tau1);
stokesBF ->addTerm(-u1_hat , tau1 ->dot_normal ());

// add terms for tau2:
stokesBF ->addTerm(u->y(), tau2 ->div ());
stokesBF ->addTerm(Re * sigma2 , tau2);
stokesBF ->addTerm(-u2_hat , tau2 ->dot_normal ());

vector <double > dims = {1.0 ,1.0}; // domain dimensions
vector <int > meshDims = {2 ,2}; // 2x2 initial mesh
vector <double > x0 = {0.0 ,0.0}; // lower -left corner at origin

MeshTopologyPtr meshTopo;
meshTopo = MeshFactory :: rectilinearMeshTopology(dims , meshDims , x0);
int H1Order = 5;
int delta_k = 2;
MeshPtr mesh = MeshFactory :: minRuleMesh(meshTopo , stokesBF , H1Order , delta_k);

SolutionPtr backFlow = Solution :: solution(stokesBF ,mesh);
mesh ->registerSolution(backFlow);

FunctionPtr u_prev = Function :: solution(u,backFlow);
FunctionPtr sigma1_prev = Function :: solution(sigma1 ,backFlow);
FunctionPtr sigma2_prev = Function :: solution(sigma2 ,backFlow);

BFPtr nsBF = stokesBF ->copy ();
nsBF ->addTerm(Re * u_prev * sigma1 , v1);
nsBF ->addTerm(Re * u_prev * sigma2 , v2);

nsBF ->addTerm(Re * sigma1_prev * u, v1);
nsBF ->addTerm(Re * sigma2_prev * u, v2);

double eps = 1.0 / 64.0;
FunctionPtr lidVelocity = Teuchos ::rcp(new LidVelocity(eps));

SpatialFilterPtr lid = SpatialFilter :: matchingY (1.0);
SpatialFilterPtr wall = !lid; // not lid --> wall

FunctionPtr zero = Function :: constant (0); // for wall velocity

// for the non -zero velocity BC, need to impose on the
// *difference* between previously imposed velocity and
// the velocity we want (because we’ll accumulate , and
// also because on the coarse meshes we won’t get
// the BCs exactly).

FunctionPtr u1_hat_prev = Function :: solution(u1_hat , backFlow);

BCPtr bc = BC::bc();
bc ->addDirichlet(u1_hat , lid , lidVelocity - u1_hat_prev);
bc ->addDirichlet(u1_hat , wall , zero);
bc ->addDirichlet(u2_hat , lid | wall , zero);

RHSPtr rhs = RHS::rhs ();
LinearTermPtr stokesTerm = stokesBF ->testFunctional(backFlow);
rhs ->addTerm(-stokesTerm);
rhs ->addTerm(-Re * u_prev * sigma1_prev * v1);
rhs ->addTerm(-Re * u_prev * sigma2_prev * v2);

vector <double > center = {0.5 ,0.5};
double p_value = 0;

42

bc ->addSpatialPointBC(p->ID(), p_value , center);

IPPtr ip = nsBF ->graphNorm ();
SolutionPtr soln = Solution :: solution(nsBF ,mesh ,bc,rhs ,ip);

FunctionPtr u_incr = Function :: solution(u,soln);
FunctionPtr p_incr = Function :: solution(p,soln);
FunctionPtr sigma1_incr = Function :: solution(sigma1 ,soln);
FunctionPtr sigma2_incr = Function :: solution(sigma2 ,soln);
FunctionPtr l2_squared = u_incr * u_incr + p_incr * p_incr

+ sigma1_incr * sigma1_incr + sigma2_incr * sigma2_incr;

FunctionPtr p_prev = Function :: solution(p, backFlow);
FunctionPtr l2_backFlow_squared = u_prev * u_prev + p_prev * p_prev

+ sigma1_prev * sigma1_prev + sigma2_prev * sigma2_prev;

double l2_incr = 0;

int refNumber = 0;
HDF5Exporter exporter(mesh ,"navier -stokes -cavity");
int numSubdivisions = 30; // coarse mesh -> more subdivisions

double newtonThreshold = 1e-3;
double energyThreshold = 0.2;
RefinementStrategyPtr refStrategy =
RefinementStrategy :: energyErrorRefinementStrategy(soln , energyThreshold);
int numRefinements = 8;
bool printToConsole = true;
double energyError , l2_soln;
for (refNumber = 0; refNumber <= numRefinements; refNumber ++)
{

do
{

soln ->solve ();
l2_incr = sqrt(l2_squared ->integrate(mesh));
if (rank ==0) cout << "L^2(increment): " << l2_incr << endl;
// add increment with unit weight:
backFlow ->addSolution(soln , 1.0);

}
while (l2_incr > newtonThreshold);

exporter.exportSolution(backFlow , refNumber , numSubdivisions);

refStrategy ->refine(printToConsole);
energyError = refStrategy ->getEnergyError(refNumber);
l2_soln = sqrt(l2_backFlow_squared ->integrate(mesh));
// update threshold:
newtonThreshold = 1e-3 * energyError / l2_soln;
cout << "L^2(soln): " << l2_soln << endl;
cout << "Newton threshold: " << newtonThreshold << endl;

}
energyError = soln ->energyErrorTotal ();
cout << "Final energy error: " << energyError << endl;

return 0;
}

43

Chapter 5

Formulations: Poisson, Stokes,
and Navier-Stokes

In Chapters 3 and 4, we implemented drivers that included bilinear
formulations for Stokes and Navier-Stokes, respectively. Generally, we prefer
to avoid implementing such things in our drivers, for a few reasons. First,
much of the time we will be interested in the same formulation in the context
of several drivers. Second, the implementations are somewhat complex and
error-prone—it is fairly easy to introduce a sign error, for example—and by
having a single implementation that is reused, we can reduce the chances of
bugs in our drivers. Finally, by having an implementation that is independent
of the driver, we make it much simpler to test the implementation in our unit
tests (we plan to address Camellia’s approach to unit tests in Part 2 of this
manual).

For these reasons, Camellia includes several “Formulation” classes which
define some commonly used bilinear forms. In this chapter, we dis-
cuss three of these: PoissonFormulation, StokesVGPFormulation, and
NavierStokesVGPFormulation. The latter two implement the same VGP
formulations covered in Chapters 3 and 4, while the former implements the
Poisson formulation derived in Chapter 2.

Some basic conventions adopted by the Formulation classes include:

• The BFPtr object corresponding to the bilinear form should be available
via a bf() method.

• Each trial and test variable should be available through a method
bearing its name.

44

• When there are subtleties involving appropriate application of bound-
ary conditions—e.g., inflow conditions—the Formulation should include
mechanisms by which the user can specify these simply.

5.1 The PoissonFormulation Class

Consider the Poisson equation

�u = f.

In Section 2.3.1, we introduced an ultraweak variational formulation for this
equation, in which we identified a new variable � with ru:

b(·, ·) = (��,rv) + hb�n, vi
+ (�, ⌧) + (u,r · ⌧)� hbu, ⌧ · ni = (f, v)

This formulation is implemented by the PoissonFormulation class. The
constructor for this class takes two required arguments: spaceDim, the spatial
dimension of the mesh (values of 1, 2, and 3 are valid) and conformingTraces,
a boolean governing the kind of continuity that is enforced on theH1 trace bu.1
Because bu is the trace of an H1 variable, a conforming discretization of bu in
3D will enforce continuity at vertices, edges, and faces; if conformingTraces
is true, then such continuity will be enforced. If conformingTraces is false,
then continuity will only be enforced on the sides (faces in 3D, edges in 2D).
To create a BF object for a 3D ultraweak conforming Poisson formulation,
one may write the following:

int spaceDim = 3;
bool conformingTraces = true;
PoissonFormulation form(spaceDim , conformingTraces);
BFPtr bf = form.bf();

An Example Problem

Suppose that we wish to solve the Poisson problem with unit forcing function
f = 1 and homogeneous boundary conditions, on the unit cube (0, 1)3. We

1An optional third argument allows one to specify which Poisson formulation is desired;
the default is the above ultraweak DPG formulation—other available formulations are the
continuous Galerkin formulation and the primal DPG formulation.

45

define the FunctionPtr f, then request a corresponding RHS object from the
Poisson formulation form:

FunctionPtr f = Function :: constant (1.0);
RHSPtr rhs = form.rhs(f);

As we have seen, for DPG ultraweak formulations, we generally impose
boundary conditions using the trace and flux variables—here we will want to
impose bu = 0 on the entire boundary of the domain. To set up the BC object,
we need access to the variable bu, which is available through the u hat()
method of PoissonFormulation. Thus we do the following:

BCPtr bc = BC::bc();
VarPtr u_hat = form.u_hat ();
SpatialFilterPtr everywhere = SpatialFilter :: allSpace ();
bc->addDirichlet(u_hat , everywhere , Function ::zero ());

We can use MeshFactory to create a mesh corresponding to our domain; we
start with a single element. We use an H1 order of 3; this means that our
L2 field variables will be quadratic. We also use a polynomial enrichment
of 3 for the test space; it has been proven for Poisson that this su�ces to
guarantee optimal convergence rates for the DPG method [11].

vector <int > elementCounts = {1,1,1}; // x,y,z directions
vector <double > domainDim = {1.0 ,1.0 ,1.0};
int H1Order = 3;
int delta_k = 3;
MeshPtr mesh = MeshFactory :: rectilinearMesh(bf , domainDim ,

elementCounts ,
H1Order , delta_k);

The solution to our Poisson problem is quite smooth and isotropic, so that
uniform refinements are a reasonable choice. We refine three times to produce
an 8⇥ 8⇥ 8 mesh:

int numRefs = 3;
for (int i=0; i<numRefs; i++)
{

mesh ->hRefine(mesh ->getActiveCellIDsGlobal ());
}

We now create a Solution and solve:

SolutionPtr soln = Solution :: solution(bf,mesh ,bc,rhs ,
bf->graphNorm ());

soln ->solve ();

46

A 2D slice of the solution, taken on the center plane at x = 1

2

, can be found
in Figure 5.1.

Figure 5.1: Poisson problem on unit cube with homogeneous BCs and unit
forcing function: u solution at x = 1

2

on quadratic 8⇥ 8⇥ 8 mesh.

5.2 The StokesVGPFormulation Class

Camellia provides a StokesVGPFormulation class for the velocity-gradient-
pressure ultraweak Stokes formulation discussed in Chapter 3. As with
PoissonFormulation, both conforming and non-conforming traces are sup-
ported; StokesVGPFormulation also provides built-in features for boundary
conditions, solving, and refinements. To implement a solver for the same
cavity flow problem that we discussed in Chapter 3, we begin by creating the
StokesVGPFormulation object:

int spaceDim = 2; // 3D also supported
double mu = 1.0;
bool conformingTraces = true;
StokesVGPFormulation form

= StokesVGPFormulation :: steadyFormulation(spaceDim , mu,
conformingTraces);

We then create the MeshTopology exactly as before:

vector <double > dims = {1.0 ,1.0};// domain dimensions
vector <int > meshDims = {2,2}; // 2x2 initial mesh
vector <double > x0 = {0.0 ,0.0}; // lower -left corner at origin
MeshTopologyPtr meshTopo;
meshTopo = MeshFactory :: rectilinearMeshTopology(dims ,

47

meshDims , x0);

Next, we call initializeSolution(); StokesVGPFormulation will create a
new Solution object internally. As before, we use a field polynomial order
of 4, a test space enrichment �k = 2, and a zero forcing function, f .

int polyOrder = 4;
int delta_k = 2;
FunctionPtr f = Function ::zero (1); // vector zero
form.initializeSolution(meshTopo , polyOrder , delta_k , f);

Assuming we have a LidVelocity class defined as in Chapter 3, we create a
vector velocity function for the velocity at the lid:

double eps = 1.0 / 64.0;
FunctionPtr lidVelocity_x

= Teuchos ::rcp(new LidVelocity(eps));
FunctionPtr lidVelocity

= Function :: vectorize(lidVelocity_x , Function ::zero ());

We then define SpatialFilter objects corresponding to the lid and the
walls, as we did before:

SpatialFilterPtr lid = SpatialFilter :: matchingY (1.0);
SpatialFilterPtr wall = !lid; // not lid --> wall

Now, we add wall conditions and the velocity condition at the lid. While there
is not technically inflow at the lid, because the velocity is non-zero, we use
StokesVGPFormulation’s addInflowCondition() method, which imposes
Dirichlet conditions on bu. We also add the condition that the pressure is
zero at (0.5, 0.5):2

form.addInflowCondition(lid , lidVelocity);
form.addWallCondition(wall);
form.addPointPressureCondition ({0.5 ,0.5});

We can then solve on the initial mesh by simply calling

form.solve ();

We set up an exporter for visualization much as in Chapter 3:

int refNumber = 0;
SolutionPtr soln = form.solution ();
HDF5Exporter exporter(soln ->mesh(),"ch05 -stokes -cavity -flow");

2Note that value imposition at a point requires that a vertex is defined at the point.

48

int numSubdivisions = 30; // coarse mesh -> more subdivisions
exporter.exportSolution(soln , refNumber , numSubdivisions);

StokesVGPFormulation also creates a RefinementStrategy when it
creates the Solution object; here, we set the relative energy error threshold
to 0.2, just as we had in Chapter 3—this means that we will refine all elements
that have energy error greater than 20% of the maximum element energy
error.

double threshold = 0.2; // relative energy error threshold
auto refStrategy = form.getRefinementStrategy ();
refStrategy ->setRelativeErrorThreshold(threshold);

We can refine by calling form.refine(), so that our refinement loop becomes
simply:

int numRefinements = 8;
bool printToConsole = true;
for (refNumber = 1; refNumber < numRefinements; refNumber ++)
{

form.refine(printToConsole);
form.solve ();
exporter.exportSolution(soln , refNumber , numSubdivisions);

}

A complete listing for the Stokes cavity driver using StokesVGPFormulation
can be found in Section 5.4.2.

5.2.1 StokesVGPFormulation: Other Notable Features

A handful of other features in the StokesVGPFormulation class are worth
noting; it supports

• solving for streamfunctions in 2D,

• imposing outflow conditions (via a zero-traction constraint), and

• checkpointing for mesh and solution objects.

We cover each of these briefly in turn.

49

2D Streamfunctions. In 2D incompressible flow computations, some-
times one wishes to solve for the streamfunction �, which for a velocity field
u is given by the solution to the problem

�� = r⇥ u, ⌦

@�

@n
= u⇥ n, @⌦

Z

⌦

� = 0.

For 2D problems, StokesVGPFormulation sets up a Poisson problem corre-
sponding to the above, driven by the velocity u of the Stokes solution. One
may access the streamfunction’s Solution object via form.streamSolution();
the variable � is accessible via form.streamPhi(). Thus, to output a stream
solution for visualization, we may write the following code.

SolutionPtr streamSoln = form.streamSolution ();
VarPtr phi = form.streamPhi ();
streamSoln ->solve ();
FunctionPtr phiSoln = Function :: solution(streamSoln , phi);
HDF5Exporter streamExport(streamSoln ->mesh(),

"ch05 -stokes -stream");
streamExport.exportFunction ({ phiSoln}, {"phi"}, refNumber ,

numSubdivisions);

A plot of the streamfunction for Stokes cavity flow on a quartic mesh after
8 refinements can be seen in Figure 5.2.

Figure 5.2: Streamfunction for the Stokes cavity flow problem: � solution on
quartic mesh after 8 refinements.

50

Outflow Conditions. In solving incompressible flow problems, there is
some art involved in setting appropriate conditions at outflow—and in
ensuring that outflow regions are su�ciently far from regions of interest
in the domain. One common choice at outflow boundaries is to impose
zero-traction conditions. As mentioned in passing in Chapter 3, the flux
btn in the ultraweak VGP formulation is sometimes referred to as a pseudo-
traction; one can impose zero conditions on this variable at the outflow and
achieve reasonable results. However, it may be preferable to impose a zero
condition on the physical traction rather than the pseudo-traction. The
physical traction is defined as

t
phys

= µ
�
ru+ (ru)T

�
n� pn

=
�
� + �T

�
n� pn,

where n is the unit normal on the outflow boundary. StokesVGPFormulation
provides a method, addOutflowCondition(), which imposes a zero condition
on either the physical traction t

phys

or on the pseudo-tractionbtn; which condi-
tion is imposed is controlled by a boolean argument, usePhysicalTraction.
Thus, once we have a formulation object form constructed and have called
form.initializeSolution(), if we have a SpatialFilter object outflow,
we may do the following to impose a physical traction:

bool usePhysicalTraction = true;
form.addOutflowCondition(outflow , usePhysicalTraction);

It is worth noting that since the physical traction is not a solution variable
in our formulation, this condition is imposed using penalty constraints. By
contrast, if we impose an outflow condition using the pseudo-traction, we
simply impose Dirichlet conditions on the btn variables.

Checkpointing. It is common, in scientific computations of many kinds,
to write the computational state to disk at various points during a run—this
is known as a checkpoint. This allows later runs to pick up where a prior
run left o↵. One generally writes checkpoints multiple times during the run,
not just at the end of the run, to guard against possible interruptions of the
driver. (Examples of interruptions include running out of time or memory
in an allocation, as well as hardware and software failures of many kinds.)
StokesVGPFormulation takes advantage of features in Solution and Mesh
to write checkpoints and restore state from previously written checkpoints.

51

Once one has initialized the solution in the form (whether one has solved
and/or refined or not), one may write a checkpoint as follows.

int checkpointNumber = 0;
ostringstream checkpointPrefix;
checkpointPrefix << "stokes -checkpoint -";
checkpointPrefix << checkpointNumber;
form.save(checkpointPrefix.str ());

This example also shows how to create a filename prefix that depends on an
integer checkpoint number, so that one may store a series of checkpoints. To
load from a checkpoint, one simply does the following:

form.load(checkpointPrefix.str ());

Note that, in the present implementation, the checkpoint only stores solution
data and mesh information—it does not store boundary conditions, for
example. Calls to addOutflowCondition(), for example, should still be
made after loading from a checkpoint.

5.3 The NavierStokesVGPFormulation Class

The NavierStokesVGPFormulation class makes use of the StokesVGP-
Formulation class, and provides many of the same features in the context of
the Navier-Stokes VGP formulation derived in Chapter 4. In addition, it sup-
ports features useful for performing Newton iterations. Because the Navier-
Stokes bilinear form refers to the background flow, and the background flow
is defined on a mesh, constructors for NavierStokesVGPFormulation require
a MeshTopology to be provided, and a field polynomial order to be selected.
(This is in contrast with the Stokes case, where we were able to construct
the formulation, and only later call initializeSolution(), providing a
MeshTopology at that point.) Supposing that we have an appropriately
defined MeshTopology, meshTopo, we may construct a NavierStokesVGP-
Formulation as follows:

int spaceDim = 2; // 3D also supported
double Re = 100;
bool useConformingTraces = true;
int polyOrder = 4;
int delta_k = 2;
auto form = NavierStokesVGPFormulation :: steadyFormulation(

spaceDim , Re , useConformingTraces , meshTopo , polyOrder ,

52

delta_k);

When using NavierStokesVGPFormulation, we can set up boundary con-
ditions in precisely the same way as we did with StokesVGPFormulation;
in contrast to the driver we implemented in Chapter 4, we do not need to
explicitly take the di↵erence between the background flow trace velocity and
the velocity we seek to impose on the boundary—the NavierStokesVGP-
Formulation class handles this for us. Similarly, instead of setting up a
Function object to compute the L2 norm of the solution and that of the
increment, now NavierStokesVGPFormulation will do this for us, and we
have only to call

double l2_soln = form.L2NormSolution ();
double l2_incr = form.L2NormSolutionIncrement ();

We may also now combine the steps of solving for the increment and adding
to the background flow by calling form.solveAndAccumulate(). Thus the
double loop for refinement and Newton iterations now reads:

for (refNumber = 0; refNumber <= numRefinements; refNumber ++)
{

do
{

form.solveAndAccumulate ();
l2_incr = form.L2NormSolutionIncrement ();
if (rank ==0)

cout << "L^2(increment): " << l2_incr << endl;
}
while (l2_incr > newtonThreshold);

exporter.exportSolution(form.solution(), refNumber ,
numSubdivisions);

form.refine(printToConsole);
energyError = refStrategy ->getEnergyError(refNumber);
l2_soln = form.L2NormSolution ();
// update threshold:
newtonThreshold = 1e-3 * energyError / l2_soln;
if (rank ==0)
{

cout << "L^2(soln): " << l2_soln << endl;
cout << "Newton threshold: " << newtonThreshold << endl;

}
}

53

Like the StokesVGPFormulation, the NavierStokesVGPFormulation sup-
ports setting inflow and outflow conditions, as well as both kinds of pressure
constraints. The complete code for an adaptive cavity flow solver using
NavierStokesVGPFormulation can be found in Section 5.4.3.

5.4 Drivers

5.4.1 Poisson Driver

The complete driver for the Poisson problem in Section 5.1 is in a file
called ch05-PoissonHomogeneous.cpp, which can be found in the Camellia
distribution in manual-examples/ch05-formulations. We also include it
below.
//
// 2016 UChicago Argonne. For licensing details , see LICENSE -Camellia in the licenses directory.
//

#include "Camellia.h"

#include "Teuchos_CommandLineProcessor.hpp"

using namespace Camellia;
using namespace std;

int main(int argc , char *argv [])
{

Teuchos :: GlobalMPISession mpiSession (&argc , &argv); // initialize MPI

int rank = MPIWrapper :: CommWorld()->MyPID ();

int spaceDim = 3;
bool conformingTraces = true;
PoissonFormulation form(spaceDim , conformingTraces);
BFPtr bf = form.bf();

FunctionPtr f = Function :: constant (1.0);
RHSPtr rhs = form.rhs(f);

BCPtr bc = BC::bc();
VarPtr u_hat = form.u_hat ();
SpatialFilterPtr everywhere = SpatialFilter :: allSpace ();
bc ->addDirichlet(u_hat , everywhere , Function ::zero ());

vector <int > elementCounts = {1,1,1}; // x,y,z directions
vector <double > domainDim = {1.0 ,1.0 ,1.0};
int H1Order = 3;
int delta_k = 3;
MeshPtr mesh = MeshFactory :: rectilinearMesh(bf , domainDim , elementCounts , H1Order , delta_k);

// refine mesh uniformly 3 times -- result will be 8x8x8 mesh
int numRefs = 3;
for (int i=0; i<numRefs; i++)
{

mesh ->hRefine(mesh ->getActiveCellIDsGlobal ());
}

SolutionPtr soln = Solution :: solution(bf,mesh ,bc,rhs ,bf->graphNorm ());
soln ->solve ();

HDF5Exporter exporter(mesh ,"ch05 -poisson -homogeneous");
int numSubdivisions = 30; // coarse mesh -> more subdivisions
int refNumber = 0;
exporter.exportSolution(soln , refNumber , numSubdivisions);

54

return 0;
}

55

5.4.2 Stokes Cavity Flow Driver

This chapter’s Stokes cavity flow driver can be found in the Camellia distribu-
tion in manual-examples/ch05-formulations, in ch05-StokesCavity.cpp.
It can also be found below.
//
// 2016 UChicago Argonne. For licensing details , see LICENSE -Camellia in the licenses directory.
//

#include "Camellia.h"

using namespace Camellia;
using namespace std;

class LidVelocity : public SimpleFunction <double >
{

double _eps; // interpolation width
public:

LidVelocity(double eps)
{

_eps = eps;
}
double value(double x, double y)
{

if (abs(x) < _eps)
{

return x / _eps; // top left
}
else if (abs(1.0-x) < _eps)
{

return (1.0-x) / _eps; // top right
}
else
{

return 1; // top middle
}

}
};

int main(int argc , char *argv [])
{

Teuchos :: GlobalMPISession mpiSession (&argc , &argv); // initialize MPI

int spaceDim = 2; // 3D also supported
double mu = 1.0;
bool conformingTraces = true;
StokesVGPFormulation form = StokesVGPFormulation :: steadyFormulation(spaceDim , mu, conformingTraces);

vector <double > dims = {1.0 ,1.0}; // domain dimensions
vector <int > meshDims = {2 ,2}; // 2x2 initial mesh
vector <double > x0 = {0.0 ,0.0}; // lower -left corner at origin

MeshTopologyPtr meshTopo;
meshTopo = MeshFactory :: rectilinearMeshTopology(dims ,

meshDims , x0);
int polyOrder = 4;
int delta_k = 2;
FunctionPtr f = Function ::zero (1); // vector zero
form.initializeSolution(meshTopo , polyOrder , delta_k , f);

double eps = 1.0 / 64.0;
FunctionPtr lidVelocity_x = Teuchos ::rcp(new LidVelocity(eps));
FunctionPtr lidVelocity = Function :: vectorize(lidVelocity_x , Function ::zero ());

SpatialFilterPtr lid = SpatialFilter :: matchingY (1.0);
SpatialFilterPtr wall = !lid; // not lid --> wall

form.addInflowCondition(lid , lidVelocity);
form.addWallCondition(wall);
form.addPointPressureCondition ({0.5 ,0.5});

form.solve ();

56

int refNumber = 0;
SolutionPtr soln = form.solution ();
SolutionPtr streamSoln = form.streamSolution ();
VarPtr phi = form.streamPhi ();
FunctionPtr phiSoln = Function :: solution(phi , streamSoln);

HDF5Exporter exporter(soln ->mesh(),"ch05 -stokes -cavity -flow");
HDF5Exporter streamExport(streamSoln ->mesh(),"ch05 -stokes -stream");

int numSubdivisions = 30; // coarse mesh -> more subdivisions
exporter.exportSolution(soln , refNumber , numSubdivisions);

streamSoln ->solve ();
streamExport.exportFunction ({ phiSoln}, {"phi"},

refNumber , numSubdivisions);

double threshold = 0.2; // relative energy error threshold
auto refStrategy = form.getRefinementStrategy ();
refStrategy ->setRelativeErrorThreshold(threshold);

int numRefinements = 8;
bool printToConsole = true;
for (refNumber = 1; refNumber < numRefinements; refNumber ++)
{

form.refine(printToConsole);
form.solve ();
exporter.exportSolution(soln , refNumber , numSubdivisions);
streamSoln ->solve ();
streamExport.exportFunction ({ phiSoln}, {"phi"},

refNumber , numSubdivisions);
}
// report final energy error:
double energyError = soln ->energyErrorTotal ();
cout << "Final energy error: " << energyError << endl;

return 0;
}

57

5.4.3 Navier-Stokes Cavity Flow Driver

This chapter’s Navier-Stokes cavity flow driver can be found in the Camellia
distribution in manual-examples/ch05-formulations, in the file
ch05-NavierStokesCavity.cpp. It can also be found below.
//
// 2016 UChicago Argonne. For licensing details , see LICENSE -Camellia in the licenses directory.
//

#include "Camellia.h"

using namespace Camellia;
using namespace std;

class LidVelocity : public SimpleFunction <double >
{

double _eps; // interpolation width
public:

LidVelocity(double eps)
{

_eps = eps;
}
double value(double x, double y)
{

if (abs(x) < _eps)
{

return x / _eps; // top left
}
else if (abs(1.0-x) < _eps)
{

return (1.0-x) / _eps; // top right
}
else
{

return 1; // top middle
}

}
};

int main(int argc , char *argv [])
{

Teuchos :: GlobalMPISession mpiSession (&argc , &argv); // initialize MPI
int rank = MPIWrapper :: CommWorld()->MyPID ();

double Re = 1e2;

int spaceDim = 2;
int meshWidth = 2;
vector <double > dims = {1.0, 1.0};
vector <int > numElements = {2 ,2};
vector <double > x0 = {0 ,0};

MeshTopologyPtr
meshTopo = MeshFactory :: rectilinearMeshTopology(dims ,numElements ,x0);

int polyOrder = 4, delta_k = 2;

bool useConformingTraces = false;
NavierStokesVGPFormulation form =

NavierStokesVGPFormulation :: steadyFormulation(spaceDim , Re, useConformingTraces ,
meshTopo , polyOrder , delta_k);

double eps = 1.0 / 64.0;
FunctionPtr lidVelocity_x = Teuchos ::rcp(new LidVelocity(eps));
FunctionPtr lidVelocity = Function :: vectorize(lidVelocity_x , Function ::zero ());

SpatialFilterPtr lid = SpatialFilter :: matchingY (1.0);
SpatialFilterPtr wall = !lid; // not lid --> wall

form.addInflowCondition(lid , lidVelocity);
form.addWallCondition(wall);
form.addPointPressureCondition ({0.5 ,0.5});

58

double l2_incr = 0;

int refNumber = 0;
MeshPtr mesh = form.solution()->mesh ();
HDF5Exporter exporter(mesh ,"ch05 -navier -stokes -cavity");
int numSubdivisions = 30; // coarse mesh -> more subdivisions

double newtonThreshold = 1e-3;
double energyThreshold = 0.2;
auto refStrategy = form.getRefinementStrategy ();
refStrategy ->setRelativeErrorThreshold(energyThreshold);

int numRefinements = 8;
bool printToConsole = true;
double energyError , l2_soln;
for (refNumber = 0; refNumber <= numRefinements; refNumber ++)
{

do
{

form.solveAndAccumulate ();
l2_incr = form.L2NormSolutionIncrement ();
if (rank ==0) cout << "L^2(increment): " << l2_incr << endl;

}
while (l2_incr > newtonThreshold);

exporter.exportSolution(form.solution(), refNumber , numSubdivisions);

if (refNumber < numRefinements)
{

form.refine(printToConsole);
energyError = refStrategy ->getEnergyError(refNumber);

}
else
{

energyError = refStrategy ->computeTotalEnergyError ();
}
l2_soln = form.L2NormSolution ();
// update threshold:
newtonThreshold = 1e-3 * energyError / l2_soln;
if (rank ==0) cout << "L^2(soln): " << l2_soln << endl;
if (rank ==0) cout << "Newton threshold: " << newtonThreshold << endl;

}
if (rank ==0) cout << "Final energy error: " << energyError << endl;

return 0;
}

59

Chapter 6

Global Linear Solvers: Direct
and Iterative Options

6.1 Solver Interface

Camellia defines a solver interface through the Solver class; interfaces
to several third-party solvers are built into Camellia. These include the
following sparse direct solvers:

• SuperLUDist,

• MUMPS, and

• KLU2 (part of the Trilinos Amesos2 package).

(The MUMPS and SuperLUDist solvers are only available if Trilinos was
linked against these when it was built.) Additionally, Camellia o↵ers an
iterative solver suitable for adaptively refined problems that start from
a coarse mesh; this constructs a geometric multigrid preconditioner and
performs either GMRES or conjugate gradient iterations to solve.

In previous chapters, when we had a SolutionPtr object called soln,
we invoked soln->solve(). This employs whatever solver is returned by
Solver::getDirectSolver(); the present implementation uses the first
available solver from the list above (KLU2 is always available). This method
takes an optional boolean argument, saveFactorization. If this is true,
then the solver will save factorization information for reuse. This is useful
for applications where the sti↵ness matrix may be unchanged over successive
solves; the default value is false, which may reduce memory costs.

60

6.2 Static Condensation

We have found it is often beneficial to use static condensation to reduce the
size of the global system by locally eliminating interior degrees of freedom
on each element. At present, Camellia supports static condensation for
discontinuous field variables1—therefore, it is most useful in the context
of ultraweak DPG formulations. Static condensation may be used either
with the direct solvers described above or with the geometric-multigrid-
preconditioned iterative solvers described below.

Mathematically, static condensation proceeds as follows. Suppose that
our discrete system is of the form Kx = F . The system can be reordered to
take the form ✓

K
11

K
12

KT
12

K
22

◆✓
u
û

◆
=

✓
F
1

F
2

◆

where K
11

is block diagonal, u represents the degrees of freedom correspond-
ing to field variables, and û represents those corresponding to the trace
variables. Noting that u = K�1

11

(F
1

� K
12

û), we can substitute this into
the equation KT

12

u +K
22

û = F
2

to obtain the Schur complement system for
the trace degrees of freedom:

(K
22

�KT
12

K�1

11

K
12

)| {z }
=

eK

û = F
2

�KT
12

K�1

11

F
1

.

Since K
11

is block-diagonal, its inversion can be carried out element-wise and
in parallel; usually, eK is a significantly smaller matrix and the computational
cost of the global solve is reduced.

To set a Camellia solution object soln to use static condensation, one
may simply call:

soln ->setUseCondensedSolve(true);

It is important to invoke this method prior to creating any GMGSolver for
soln.

1One exception worth noting: when a discontinuous field variable has a zero-mean
constraint or a point-value imposition, as in pressure constraints for incompressible flow,
that variable will not be statically condensed.

61

6.3 Geometric Multigrid Preconditioned It-
erative Solves

The Camellia GMGSolver class o↵ers very good scalability,2 though for smaller
problems the benefits are outweighed by the cost of construction. We
recommend using an iterative solver for most 3D problems, and for 2D
problems with a large number of degrees of freedom (more than 106 or
so). We also recommend iterative solvers for time-stepping solves in which
the system matrix remains fixed, because then the cost of constructing the
multigrid operators can be amortized over many solves. For full details on
our approach to geometric multigrid preconditioning, see Roberts et al. [16].

Suppose that we have a problem posed on a Mesh object named mesh, with
Solution object soln, and we would like to perform a conjugate gradient
solve to a relative tolerance of 10�6, with a maximum of 1000 conjugate
gradient iterations. The simplest way to use GMGSolver to do this is as
follows:

double cgTol = 1e-6;
double maxIters = 1000;
auto solver = GMGSolver :: cgSolver(soln , cgTol , maxIters);
soln ->solve(solver);

At a high level, the cgSolver() implementation does the following:

1. Produce a stack of meshes, from coarse to fine (details below).

2. Subject to the constraint that there are at least two meshes in the stack,
discard any meshes that have fewer than 2000 degrees of freedom. (The
idea is that for meshes this small, the direct solver that we will use at
the coarsest level will be quite e�cient.)

3. Construct a geometric multigrid V-cycle operator with appropriate
prolongation and restriction operators.

4. Construct a GMGSolver object that is set to use the conjugate gradient
method.

We now briefly describe the construction of the mesh stack in step 1. We start
with the finest mesh, which is the mesh used by soln to define the problem.

2On Argonne’s Mira supercomputer, we have run on as many as 32,768 MPI ranks,
with 64% of the optimal speedup in the one-element-per-rank limit [16].

62

We first coarsen maximally in p, to produce the second-finest mesh. We then
h-coarsen any active elements in this mesh that have a parent element (i.e.,
active elements that were produced by a refinement), to produce the next
mesh. We repeat this until no elements have any parent elements—i.e., until
we have arrived at the root-level mesh. An example mesh stack can be found
in Figure 6.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

mesh

k = 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

mesh

k = 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

mesh

k = 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

mesh

k = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

mesh

k = 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

mesh

k = 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

mesh

k = 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

mesh

k = 1 k = 0

k = 0 k = 0

k = 0 k = 0

k = 0

k = 0

k = 4

Figure 6.1: Multigrid hierarchy for quartic lid-driven cavity flow with k = 4
after six adaptive mesh refinements; at top left is the finest mesh, at bottom
right is the coarsest.

6.3.1 Other GMGSolver Options

A few other features of the GMGSolver class are worth noting. First, there is
a static constructor gmresSolver(), which works precisely the same way as
cgSolver(), except that GMRES iterations are performed. In general, CG
is suitable for symmetric positive definite (SPD) problems, while GMRES
should be used for problems that are not SPD. (Standard DPG sti↵ness
matrices are always SPD—or Hermitian positive definite in the case of
complex problems.)

Second, there is a method meshesForMultigrid(), which gives direct
access to the stack of meshes that cgSolver() and gmresSolver() employ.
One could use this to produce a custom mesh stack, and then construct

63

a GMGSolver using that stack—there is a static constructor, gmgSolver(),
which takes the mesh stack as an argument. For example, if we have a
solution soln on a mesh fineMesh, would like to use a coarse polynomial
order of 1 (instead of the 0 we used above), and would like to discard meshes
in the stack that have fewer than 200 elements, we could do the following.

int kCoarse = 1;
vector <MeshPtr > meshStack

= GMGSolver :: meshesForMultigrid(fineMesh , kCoarse);
vector <MeshPtr > smallStack;
int numMeshes = meshStack.size ();
int meshOrdinal = 0;
for (auto mesh : meshStack)
{

if (mesh ->numActiveElements () > 200)
{

smallStack.push_back(mesh);
}
else if (numMeshes - meshOrdinal <= 2)
{

// then we need to add mesh anyway: need >= 2 meshes
smallStack.push_back(mesh);

}
meshOrdinal ++;

}
bool useCG = false; // will use GMRES
GMGOperator :: MultigridStrategy multigridStrategy

= GMGOperator :: V_CYCLE; // W_CYCLE also possible
double tol = 1e-6;
int maxIters = 1000;
auto gmgSolver = GMGSolver :: gmgSolver(soln , useCG , smallStack ,

maxIters ,tol ,
multigridStrategy);

Third, it is possible to control the level of console output that GMGSolver
produces. Because the output produced by Trilinos’s Belos solver imitates
the output of the earlier Aztec solver, the option controlling this is
setAztecOutput(int n). A zero argument indicates that no output should
be produced; an argument of positive n will output the residual every nth
iteration, as well as the final residual.

Finally, when operating in CG mode, GMGSolver supports computing a
condition number estimate of the preconditioned system. The code below
demonstrates setting the gmgSolver to emit no console output, solving, and

64

then printing the condition number estimate.

gmgSolver ->setAztecOutput (0);
gmgSolver ->setComputeConditionNumberEstimate(true);
soln ->solve(gmgSolver);
// print condest for preconditioned system
double condest = gmgSolver ->condest ();
cout << "condest: " << condest;

65

Appendix A

Other Features

The present form of this manual is incomplete; it is the first part of what
is intended to be a longer manuscript. Due to time constraints, there are
several important features of Camellia that we have not covered, or have not
covered as fully as we would like. This appendix provides a necessarily brief
mention of several of these features, and some notes on how to find out more
about them in advance of the publication of a revised version of this manual.

When we refer to source files below, we generally mention the location
of the .cpp file implementing particular classes. The corresponding .h files
can be found in the src/include directory. Unit tests can be found in the
unit tests directory.

Topics that we intend to cover in the main body of the completed manual
include the following:

• transient problems,

• implementing custom functions,

• using Camellia for methods other than ultraweak DPG,

• custom refinement strategies,

• unit tests in Camellia,

• visualization,

• common issues with MPI usage in Camellia, and

66

• rapid implementation of distributed algorithms using Camellia’s MPIWrapper
class.

Topics that we intend to cover in appendices to the completed manual
include:

• Camellia’s BasisReconciliation class,

• Camellia’s interface to the MOAB mesh library, and

• exporting matrices for external analysis.

We treat each of these in turn.

A.1 Support For Transient Problems

Camellia has support for both standard time-stepping techniques (such as
backward Euler), as well as space-time elements.

Time-Stepping in Camellia

One example demonstrating the use of time-stepping in the context of
an ultraweak DPG formulation can be found in StokesVGPFormulation,
many of whose features we discussed in Chapter 5. The static constructor
timeSteppingFormulation() will produce a time-stepping Stokes formula-
tion, using a simple graph norm. For more detail on time-stepping DPG
schemes, see Führer et al. [10].

Space-Time Elements in Camellia

For any supported element shape, Camellia can create a corresponding
space-time extrusion of that element. Tensor-product bases are similarly
automatically created.

The space-time support in the present release should be understood as a
proof of concept, because of two limitations. First, the temporal extrusions
are required to be orthogonal, which means that spatial domains cannot
change size or shape in time (an advantage of space-time elements in general
is that they provide a natural way to treat such changes in the spatial
domain). Second, the implementation does not take special advantage of

67

the tensor-product structure of the finite element basis functions in the
space-time mesh. In general, space-time formulations are more expensive
than an equivalent time-stepping formulation, so that it is important to take
advantage of whatever optimizations one can for computational e�ciency.

For further discussion of space-time elements for DPG, see Truman Ellis’s
dissertation [9].

A.2 Custom Functions in Camellia

In Chapter 3, we gave an example of a custom Function subclass to
implement boundary conditions for the cavity flow problem. There, we
subclassed SimpleFunction, which allowed us to succinctly specify the
function’s dependence on spatial coordinates. However, it is also possible
to create custom functions that depend on the mesh. Similarly, Camellia
has rich support for taking derivatives of Function objects—one can take
advantage of this support by overriding dx(), dy(), dz(), and/or (for space-
time support) dt(). Standard calculus rules—the product rule and the
quotient rule, specifically—are supported by the classes that implement sums,
products, and quotients of functions. These facilities are particularly useful
in the context of manufactured solutions : starting from a set of functions
that one wishes to have as the exact solution to a problem, one may use the
original PDE to generate the right-hand side and boundary conditions that
will yield the desired solution.

For examples of Function subclasses that depend on the mesh, see
the hFunction class (giving the diameter of the current element) and
the MeshPolyOrderFunction class (giving the H1 polynomial order of the
current element), whose implementations can be found in hFunction.cpp
and MeshPolyOrderFunction.cpp, respectively, under src/Function.

For examples of Function subclasses that provide support for di↵er-
ential operations, see any of the trigonometric functions implemented in
TrigFunctions.cpp—also in the src/Function directory.

A.3 Other Finite Element Methods

Camellia has rich support for many finite element methods; the intent is
to provide support for arbitrary methods. For example implementations

68

of primal DPG, SUPG, and FOSLS (as well as ultraweak DPG) for
the convection-di↵usion-reaction problem, see the ConvectionDiffusion-
ReactionFormulation class, whose implementation can be found in a .cpp
file of the same name in the src/Formulations directory.

Camellia also has support for the jump terms employed in DG methods—
the BF class has a method called addJumpTerm(), and there is a Function
subclass called UpwindIndicatorFunction that allows specification of the u�

and u+ terms that arise in DG jump terms. There is a somewhat unpolished
example driver that demonstrates the usage of this in the context of a pure
convection problem; this can be found in the directory
src/examples/DGAdvectionExample.

A.4 Custom Refinement Strategies

The RefinementStrategy class discussed in Chapter 3 provides mechanisms
for refinement strategies driven by an error indicator function of one sort
or another. There is built-in support for using the DPG energy error,
as well as gradient-based and hessian-based error indicators. One may
implement a custom error indicator by subclassing the ErrorIndicator class
and overriding the measureError() method, whose responsibility it is to
fill the superclass’s localErrorMeasures container. The GradientError-
Indicator and HessianErrorIndicator classes, whose implemantations
can be found in src/Solution, are examples of this approach. One can then
use the RefinementStrategy constructor that takes an ErrorIndicator as
argument to produce an appropriate refinement strategy.

69

A.5 Unit Tests

Camellia includes more than 500 unit tests in its runTests driver. This is
built atop test facilities in the Teuchos package of Trilinos. A few features
of the tests driver itself are worth mentioning. First, like essentially all
Camellia drivers, it supports being run in parallel via MPI—and for a full
test, we recommend running both in serial and on several di↵erent counts of
MPI ranks. Thus, in the course of development, we often run runTests in a
sequence something like the following:

./ unit_tests/runTests
mpirun -np 4 ./ unit_tests/runTests
mpirun -np 16 ./ unit_tests/runTests

We expect all tests to pass in all three cases. Each test identifies a group to
which it belongs, as well as the name of the test itself. One can run subsets
of tests by specifying group or test names at the command line; one can also
match similarly-named groups or tests via glob matches. For example,

./ unit_tests/runTests --group="*VGPFormulation" --test="*2D*"

will run all tests in the groups NavierStokesVGPFormulation and Stokes-
VGPFormulation that have the string “2D” in the test names.

There are a host of other options supported by runTests; by running

./ unit_tests/runTests --help

one may see a listing of supported options.
The tests themselves can be found in the unit tests directory. To

add a new file implementing further tests, one can duplicate the file
TestsTemplate.cpp and uncomment and edit the TEUCHOS UNIT TEST()
preprocessor calls to include the desired group name and test name. It is
not immediately obvious from the interface how best to write a set of tests
that share most of the code, di↵ering only in some parameters. The key
to understanding how to do this is to recognize that TEUCHOS UNIT TEST
defines two “hidden” variables, a boolean success that defines whether the
test passes or fails, and a Teuchos::FancyOStream object called out. The
following code, derived from code in the StokesVGPFormulationTests.cpp
file, defines one method for testing consistency of the formulation, and calls
it from two separate tests: one for 2D, the other for 3D.

70

void testStokesConsistencySteady(int spaceDim , Teuchos :: FancyOStream &out , bool &success)
{

// ...
double tol = 1e-10;
TEST_FLOATING_EQUALITY(expectedValue , actualValue , tol);
// TEST_FLOATING_EQUALITY sets success to false if: abs(expectedValue - actualValue) > tol
// here’s explicit code for that:
if (abs(expectedValue - actualValue) > tol)
{

success = false;
}
out << "Here’s some output I want to see if the test fails.\n"

}
TEUCHOS_UNIT_TEST(StokesVGPFormulation , Consistency_2D_Steady)
{

int spaceDim = 2;
testStokesConsistencySteady(spaceDim ,out ,success);

}

TEUCHOS_UNIT_TEST(StokesVGPFormulation , Consistency_3D_Steady_Slow)
{

int spaceDim = 3;
testStokesConsistencySteady(spaceDim ,out ,success);

}

A.6 Visualization

In several examples in Chapters 3, 4, and 4, we used the HDF5Exporter class
to export solutions and functions to a format that ParaView can read. This
is the principal strategy we employ for visualization in Camellia; we may
then do any post-processing required in ParaView itself.

For 2D visualizations, however, Camellia also includes the class GnuPlot-
Util. This includes a set of utilities that will output text files suitable for
processing with gnuplot. This can be a convenient way to visualize a 2D
mesh, for example, particularly since there is a facility for including numeric
labels corresponding to cell IDs. Supposing that we have a 2D Mesh object
called mesh, the following code will output two files, mesh and mesh.p, to
the working directory.

string exportName = "mesh";
int numPointsPerEdge = 2;
bool labelCells = true;
string meshColor = "black";
MeshTopologyPtr meshTopo = mesh ->getTopology ();
GnuPlotUtil :: writeExactMeshSkeleton(exportName ,meshTopo.get(),

numPointsPerEdge ,
labelCells , meshColor);

One can then run

gnuplot mesh.p

71

to generate an EPS representation of the mesh in mesh.eps. A sample mesh
plot—of the Stokes cavity flow problem after 3 refinements—can be found in
Figure A.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

0 2

4 5

6

8 9

11
12 13

14

16 17

192021
2223

2425
2627

mesh

Figure A.1: A figure generated by gnuplot using Camellia’s GnuPlotUtil
facility: cavity flow mesh after 3 adaptive refinements, with cells labelled.

A.7 Common Issues with MPI

Most Camellia drivers—including the examples we have provided here—can
be run on several MPI ranks without special consideration or modification.
It is important to be aware of a few facts, however, regarding Camellia’s
parallel operation, to avoid crashes or hangs when running in parallel:

• By default, Camellia’s MeshTopology is distributed during the initial-
ization of a Mesh object based on it. After that point, not all cells
will be available on all MPI ranks. Locally-owned cells can be accessed
through Mesh’s cellIDsInPartition() method; it is guaranteed that
both the geometry of local cells and that of their immediate neighbors
will be available. If an attempt is made to access an unavailable cell,
MeshTopology will throw an exception.

• Similarly, solution values are distributed according to the same parti-
tioning as the mesh. Attempts to access o↵-rank solution data may
result in zero values or run-time exceptions, depending on the context.
If a driver has inconsistent values for some quantity of interest, it is
worth checking that only local solution values are being accessed.

• Several Camellia methods perform MPI communication. For these
methods, it is important that they be run on every MPI rank within the

72

relevant MPI communicator (by default, this is MPI COMM WORLD). One
common mistake is to enclose console output within an if (rank ==
0) guard, and within that if block to call some MPI-communicating
method. If a driver hangs, this is a pattern to look out for.

A.8 Distributed Algorithms using Camellia’s
MPIWrapper

MPI provides several useful kernels for distributed computation. However,
the interface is such that one often ends up writing fairly similar code
repeatedly when implementing algorithms that use MPI, and since there
is often some reliance on pointer arithmetic, the development process is
somewhat error-prone. Camellia has a class, MPIWrapper, which aims
to provide mechanisms for e�cient development of MPI-based algorithms,
particularly those that involve C++ Standard Template Library (STL)
containers such as vector and map.

To take one example, the HessianErrorIndicator will use the Hessian
of the finite element solution polynomial if it is quadratic or higher order;
otherwise, it will use a finite di↵erence approximation based on gradients
in neighboring elements. As mentioned in the previous section, Camellia
distributes solution data, so that neighboring elements’ solution data might
not be local. Therefore, the implementation must request gradient values for
any non-local cells.

The following code creates a set that includes all remote neighbor IDs
for a Mesh object named mesh:

auto myCells = &_mesh ->cellIDsInPartition ();

set <GlobalIndexType > allNeighbors;
for (GlobalIndexType myCellID : *myCells)
{

CellPtr cell = meshTopo ->getCell(myCellID);
auto neighbors = cell ->getActiveNeighborIndices(meshTopo);
allNeighbors.insert(neighbors.begin(), neighbors.end ());

}
set <GlobalIndexType > remoteNeighbors;
for (GlobalIndexType cellID : allNeighbors)
{

if (myCells ->find(cellID) == myCells ->end ())
{

73

remoteNeighbors.insert(cellID);
}

}

Now that we have the remote neighbors, we want to request their gradient
values. We want to send a request to the owning MPI rank; the request should
contain both the cell ID whose gradient value we want, and the requesting
MPI rank (so that the owning MPI rank knows where to send the gradient).
Cell IDs in Camellia have type GlobalIndexType (an integer type, at present
defined as int), while MPI ranks are int-valued. We would like to create a
table that has an entry for each remote rank; each entry consists of a list of
requests, which are (int,GlobalIndexType) pairs. The STL map type allows
us to create lookup tables; the vector type allows us to create variable-length
arrays; the pair type allows us to create ordered pairs. Thus an appropriate
container type for our requests is

map<int,vector<pair<int,GlobalIndexType>>>;

the code for constructing and populating this container follows.

Epetra_CommPtr Comm = _mesh ->Comm ();

int myRank = Comm ->MyPID ();
map <int ,vector <pair <int ,GlobalIndexType >>> requests;
for (GlobalIndexType remoteCellID : remoteNeighbors)
{

int rank = _mesh ->partitionForCellID(remoteCellID);
requests[rank]. push_back ({myRank ,remoteCellID });

}

Now, before we send and receive, we need to establish an appropri-
ate container for the requests we receive. This will be a list of (re-
questor, cell ID) pairs—thus an appropriate type for the received requests
will be exactly the type stored in each entry of the requests table:
vector<pair<int,GlobalIndexType>>. The code below sends and receives,
placing the received requests in the requestsReceived container.

vector <pair <int ,GlobalIndexType >> requestsReceived;
MPIWrapper :: sendDataVectors(Comm , requests , requestsReceived);

Now that each MPI rank has received all requests for its rank-local values, it
can populate a container with the values and send to the recipient. What we
want to send for each request is now a pair of (cellID, gradient); the gradient

74

is vector of real values. In this case, the natural thing might seem to be to
send a vector of ordered pairs of type (GlobalIndexType, vector<double>).
The problem with this is that MPIWrapper::sendDataVectors requires the
data type of vector entries to have fixed length, and vector<double> violates
this requirement. What we do instead, therefore, is send an ordered sequence
of entries, one for each component of the gradient. The type of each entry
is then (GlobalIndexType, double), and the appropriate container type for
the responses is

map<int,vector<pair<int,double>>>;

the code below populates this container, supposing that there is already a
lookup table called gradients that contains the gradients of rank-local cells
(stored as vector<double> entries in a map whose keys are the cell IDs), and
performs the send and receive:

map <int ,vector <pair <GlobalIndexType ,double >>> responsesToSend;
vector <pair <GlobalIndexType ,double >> responsesReceived;
for (pair <int ,GlobalIndexType > request : requestsReceived)
{

int remotePID = request.first;
GlobalIndexType myCellID = request.second;
vector <double > gradient = gradients[myCellID];
for (double gradient_comp : gradient)
{

responsesToSend[remotePID]. push_back ({myCellID ,
gradient_comp });

}
}
MPIWrapper :: sendDataVectors(Comm , responsesToSend ,

responsesReceived);

To add the remote gradients to the gradients lookup table, we may do the
following:

for(pair <GlobalIndexType ,double > response : responsesReceived)
{

GlobalIndexType remoteCellID = response.first;
double gradient_comp = response.second;
gradients[remoteCellID]. push_back(gradient_comp);

}

75

A.9 The BasisReconciliation Class

A key component in any finite element code is the management of degree-
of-freedom connectivities : how local discretizations of a variable on each
element relate to each other on inter-element interfaces. Often, approaches
to this problem rely on particular features of a basis implementation that are
known a priori. This makes it di�cult to change basis implementations,
and particularly di�cult to support multiple types of bases. Moreover,
implementing the rules that govern reconciliation of incompatible elements
(as when polynomial orders di↵er on an interface, or there are hanging nodes)
can be tedious and error-prone.

Camellia takes a di↵erent approach in its BasisReconciliation class.
The class is responsible for computing at runtime the relationship between
discretizations on neighboring elements; it can cache the results so that
they do not need to be computed more than once, making the additional
cost of the approach negligible. The principal requirement when using
BasisReconciliation is that one of the bases be strictly finer than the
other—if so, the class can determine an exact representation of the coarse
basis in terms of the fine basis on the shared interface. Arbitrary levels of h
refinement are supported. Camellia uses BasisReconciliation both in its
implementation of the minimum rule (in the GDAMinimumRule class) and in
its construction of the prolongation operator for geometric multigrid (in the
GMGOperator class).

A.10 Importing Meshes Using MOAB

The examples in this manual have all used meshes with simple geometry
constructed dynamically by Camellia. In practice, mesh geometries are often
more complex, and are defined using meshing packages such as CUBIT [2].
The MOAB library provides mechanisms for working with many standard
mesh formats, including the ExodusII format used by CUBIT. When one
builds Camellia with MOAB, then one can import meshes in essentially any
format supported by MOAB. There is a simple example driver, MOABReader,
demonstrating this capability; this is available in the examples directory of
the Camellia distribution.

76

A.11 Exporting Matrices for External Anal-
ysis

Often when studying finite element methods, it is useful to study the system
matrices using a tool such as Octave or MATLAB. Camellia provides a
mechanism for exporting the system matrix as well as the right-hand side in
a MATLAB-compatible format. If one has a Solution object soln, before
solve() is called, one may write

soln ->setWriteMatrixToFile(true , "A.dat");
soln ->setWriteRHSToMatrixMarketFile(true , "b.dat");

Then, during solve(), Solution will write the system matrix to A.dat in a
sparse matrix format; it will write the right-hand side to b.dat. In Octave
or MATLAB, one may then write:

octave:1> load A.dat; A = spconvert(A);
octave:2> load b.dat;

One may then perform any operations of interest on A and b.

77

Bibliography

[1] Roscoe A. Bartlett. Teuchos::RCP beginner’s guide. Technical
Report SAND2004-3268, Sandia National Laboratories,
http://trilinos.sandia.gov/RefCountPtrBeginnersGuideSAND.pdf,
2010.

[2] Ted Blacker, Steven J. Owen, Matthew L. Staten, Roshan W. Quadros,
Byron Hanks, Brett Clark, Ray J. Meyers, Corey Ernst, Karl Merkley,
Randy Morris, Corey McBride, Clinton Stimpson, Michael Plooster, and
Sam Showman. CUBIT: Geometry and mesh generation toolkit 15.2 user
documentation. Technical Report SAND2016-1649 R, Sandia National
Laboratories, 2016.

[3] R. Cai, Z.and Lazarov, T.A. Manteu↵el, and S.F. McCormick. First-
order system least squares for second-order partial di↵erential equations.
I. SIAM J. Numer. Anal., 31:1785–1799, 1994.

[4] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan. Breaking spaces
and forms for the DPG method and applications including Maxwell
equations. Computers & Mathematics with Applications, 72(3):494 –
522, 2016.

[5] Bernardo Cockburn and Jayadeep Gopalakrishnan. The derivation of
hybridizable discontinuous Galerkin methods for Stokes flow. SIAM

Journal on Numerical Analysis, 47(2):1092–1125, 2009.

[6] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-
Galerkin methods. Part I: The transport equation. Comput. Methods

Appl. Mech. Engrg., 199:1558–1572, 2010. See also ICES Report 2009-
12.

78

[7] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-
Galerkin methods. Part II: Optimal test functions. Numer. Meth. Part.

D. E., 27(1):70–105, January 2011.

[8] L. Demkowicz and J. Gopalakrishnan. A primal DPG method without a
first-order reformulation. Computers & Mathematics with Applications,
66(6):1058 – 1064, 2013.

[9] Truman Everett Ellis. Space-Time Discontinuous Petrov-

Galerkin Finite Elements for Transient Fluid Mechanics. PhD
thesis, University of Texas at Austin, 2016; available at
https://github.com/trumanellis/Papers/blob/master/Dissertation/Dissertation.pdf.

[10] Thomas Führer, Norbert Heuer, and Jhuma Sen Gupta. A time-
stepping DPG scheme for the heat equation, 2016; available at
http://arxiv.org/abs/1607.00301.

[11] J. Gopalakrishnan and W. Qiu. An analysis of the practical DPG
method. Technical report, IMA, 2011. submitted.

[12] H.K. Mo↵att. Viscous and resistive eddies near a sharp corner. Journal
of Fluid Mechanics, 18(1):1–18, 1964.

[13] Nathan V. Roberts. A Discontinuous Petrov-Galerkin Methodology for

Incompressible Flow Problems. PhD thesis, University of Texas at
Austin, 2013.

[14] Nathan V. Roberts. Camellia: A software framework for discontinuous
Petrov-Galerkin methods. Computers & Mathematics with Applications,
2014.

[15] Nathan V. Roberts, Tan Bui-Thanh, and Leszek F. Demkowicz. The
DPG method for the Stokes problem. Computers and Mathematics with

Applications, 2014.

[16] Nathan V. Roberts and Jesse Chan. A geometric multigrid
preconditioning strategy for DPG system matrices. Computers

& Mathematics with Applications, 2016 (submitted); available at
http://arxiv.org/abs/1608.02567.

79

[17] Nathan V. Roberts, Leszek Demkowicz, and Robert Moser. A dis-
continuous Petrov–Galerkin methodology for adaptive solutions to the
incompressible Navier–Stokes equations. Journal of Computational

Physics, 301:456 – 483, 2015.

80

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

	Introduction
	Core Features
	Structure of this Manual

	Some Preliminaries
	Coding Conventions
	Reference-Counted Pointers in Camellia
	CommandLineProcessor
	Some Useful C++11 Features
	The auto Keyword

	Terminology
	A Brief Introduction to DPG
	An Example: Ultraweak Poisson

	Core Classes in Camellia

	Stokes Cavity Flow Using DPG
	The DPG Ultraweak Formulation
	Stokes Bilinear Form Implementation
	The Cavity Flow Problem
	Cavity Flow Implementation
	Defining the Mesh
	Boundary Conditions and Right-Hand Side
	The Test Space Inner Product
	Solution and Visualization
	Adaptive Mesh Refinements

	Stokes Cavity Flow Driver

	Navier-Stokes Cavity Flow Using DPG
	Ultraweak Formulation for Navier-Stokes
	Adjusting the RHS for Navier-Stokes Linearization
	Test Space Inner Product
	Boundary Conditions
	The Navier-Stokes Solve and the Newton Stopping Criterion
	A Dynamic Newton Threshold
	Navier-Stokes Cavity Flow Driver

	Formulations: Poisson, Stokes, and Navier-Stokes
	The PoissonFormulation Class
	The StokesVGPFormulation Class
	StokesVGPFormulation: Other Notable Features

	The NavierStokesVGPFormulation Class
	Drivers
	Poisson Driver
	Stokes Cavity Flow Driver
	Navier-Stokes Cavity Flow Driver

	Global Linear Solvers: Direct and Iterative Options
	Solver Interface
	Static Condensation
	Geometric Multigrid Preconditioned Iterative Solves
	Other GMGSolver Options

	Other Features
	Support For Transient Problems
	Custom Functions in Camellia
	Other Finite Element Methods
	Custom Refinement Strategies
	Unit Tests
	Visualization
	Common Issues with MPI
	Distributed Algorithms using Camellia's MPIWrapper
	The BasisReconciliation Class
	Importing Meshes Using MOAB
	Exporting Matrices for External Analysis

